Efficient Bilinear Attention-based Fusion for Medical Visual Question Answering
- URL: http://arxiv.org/abs/2410.21000v1
- Date: Mon, 28 Oct 2024 13:24:12 GMT
- Title: Efficient Bilinear Attention-based Fusion for Medical Visual Question Answering
- Authors: Zhilin Zhang, Jie Wang, Ruiqi Zhu, Xiaoliang Gong,
- Abstract summary: Medical Visual Question Answering (MedVQA) has gained increasing attention at the intersection of computer vision and natural language processing.
We introduce a novel fusion model that integrates Orthogonality loss, Multi-head attention and Bilinear Attention Network (OMniBAN) to achieve high computational efficiency and strong performance without the need for pre-training.
- Score: 3.983863335432589
- License:
- Abstract: Medical Visual Question Answering (MedVQA) has gained increasing attention at the intersection of computer vision and natural language processing. Its capability to interpret radiological images and deliver precise answers to clinical inquiries positions MedVQA as a valuable tool for supporting diagnostic decision-making for physicians and alleviating the workload on radiologists. While recent approaches focus on using unified pre-trained large models for multi-modal fusion like cross-modal Transformers, research on more efficient fusion methods remains relatively scarce within this discipline. In this paper, we introduce a novel fusion model that integrates Orthogonality loss, Multi-head attention and Bilinear Attention Network (OMniBAN) to achieve high computational efficiency and strong performance without the need for pre-training. We conduct comprehensive experiments and clarify aspects of how to enhance bilinear attention fusion to achieve performance comparable to that of large models. Experimental results show that OMniBAN outperforms traditional models on key MedVQA benchmarks while maintaining a lower computational cost, which indicates its potential for efficient clinical application in radiology and pathology image question answering.
Related papers
- Multi-Omics Fusion with Soft Labeling for Enhanced Prediction of Distant Metastasis in Nasopharyngeal Carcinoma Patients after Radiotherapy [4.971538849792411]
One of the challenges encountered in the integration of omics data is the presence of unpredictability.
This study aims to develop a fusion methodology that mitigates the disparities inherent in omics data.
arXiv Detail & Related papers (2025-02-12T05:26:59Z) - ICFNet: Integrated Cross-modal Fusion Network for Survival Prediction [24.328576712419814]
We propose an Integrated Cross-modal Fusion Network (ICFNet) that integrates histopathology whole slide images, genomic expression profiles, patient demographics, and treatment protocols.
ICFNet outperforms state-of-the-art algorithms on five public TCGA datasets.
arXiv Detail & Related papers (2025-01-06T05:49:08Z) - Edge-Enhanced Dilated Residual Attention Network for Multimodal Medical Image Fusion [13.029564509505676]
Multimodal medical image fusion is a crucial task that combines complementary information from different imaging modalities into a unified representation.
While deep learning methods have significantly advanced fusion performance, some of the existing CNN-based methods fall short in capturing fine-grained multiscale and edge features.
We propose a novel CNN-based architecture that addresses these limitations by introducing a Dilated Residual Attention Network Module for effective multiscale feature extraction.
arXiv Detail & Related papers (2024-11-18T18:11:53Z) - STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Med is designed to train a policy model capable of auto-generating medical visual instruction data.
We validate the efficacy and data efficiency of STLLaVA-Med across three major medical Visual Question Answering (VQA) benchmarks.
arXiv Detail & Related papers (2024-06-28T15:01:23Z) - HMANet: Hybrid Multi-Axis Aggregation Network for Image Super-Resolution [6.7341750484636975]
Transformer-based networks can only use input information from a limited spatial range.
A novel Hybrid Multi-Axis Aggregation network (HMA) is proposed in this paper to exploit feature potential information better.
The experimental results show that HMA outperforms the state-of-the-art methods on the benchmark dataset.
arXiv Detail & Related papers (2024-05-08T12:14:34Z) - MedFLIP: Medical Vision-and-Language Self-supervised Fast Pre-Training with Masked Autoencoder [26.830574964308962]
We introduce MedFLIP, a Fast Language-Image Pre-training method for Medical analysis.
We explore MAEs for zero-shot learning with crossed domains, which enhances the model's ability to learn from limited data.
Lastly, we validate using language will improve the zero-shot performance for the medical image analysis.
arXiv Detail & Related papers (2024-03-07T16:11:43Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - PMC-VQA: Visual Instruction Tuning for Medical Visual Question Answering [56.25766322554655]
Medical Visual Question Answering (MedVQA) presents a significant opportunity to enhance diagnostic accuracy and healthcare delivery.
We propose a generative-based model for medical visual understanding by aligning visual information from a pre-trained vision encoder with a large language model.
We train the proposed model on PMC-VQA and then fine-tune it on multiple public benchmarks, e.g., VQA-RAD, SLAKE, and Image-Clef 2019.
arXiv Detail & Related papers (2023-05-17T17:50:16Z) - Cross-Modal Causal Intervention for Medical Report Generation [109.83549148448469]
Medical report generation (MRG) is essential for computer-aided diagnosis and medication guidance.
Due to the spurious correlations within image-text data induced by visual and linguistic biases, it is challenging to generate accurate reports reliably describing lesion areas.
We propose a novel Visual-Linguistic Causal Intervention (VLCI) framework for MRG, which consists of a visual deconfounding module (VDM) and a linguistic deconfounding module (LDM)
arXiv Detail & Related papers (2023-03-16T07:23:55Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.