論文の概要: A Review of Graph-Powered Data Quality Applications for IoT Monitoring Sensor Networks
- arxiv url: http://arxiv.org/abs/2410.21006v1
- Date: Mon, 28 Oct 2024 13:30:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:16.578791
- Title: A Review of Graph-Powered Data Quality Applications for IoT Monitoring Sensor Networks
- Title(参考訳): IoTモニタリングセンサネットワークにおけるグラフ駆動データ品質アプリケーションの概要
- Authors: Pau Ferrer-Cid, Jose M. Barcelo-Ordinas, Jorge Garcia-Vidal,
- Abstract要約: 監視センサネットワークにおけるデータ品質制御のためのグラフベースモデルに着目する。
デジタル双生児のためのグラフベースモデルやモデル転送可能性、一般化など、今後のトレンドと課題を特定する。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License:
- Abstract: The development of Internet of Things (IoT) technologies has led to the widespread adoption of monitoring networks for a wide variety of applications, such as smart cities, environmental monitoring, and precision agriculture. A major research focus in recent years has been the development of graph-based techniques to improve the quality of data from sensor networks, a key aspect for the use of sensed data in decision-making processes, digital twins, and other applications. Emphasis has been placed on the development of machine learning and signal processing techniques over graphs, taking advantage of the benefits provided by the use of structured data through a graph topology. Many technologies such as the graph signal processing (GSP) or the successful graph neural networks (GNNs) have been used for data quality enhancement tasks. In this survey, we focus on graph-based models for data quality control in monitoring sensor networks. Furthermore, we delve into the technical details that are commonly leveraged for providing powerful graph-based solutions for data quality tasks in sensor networks, including missing value imputation, outlier detection, or virtual sensing. To conclude, we have identified future trends and challenges such as graph-based models for digital twins or model transferability and generalization.
- Abstract(参考訳): IoT(Internet of Things)テクノロジの開発により、スマートシティや環境監視、精密農業など、さまざまなアプリケーションに監視ネットワークが広く採用されている。
近年,センサネットワークからのデータ品質を改善するためのグラフベースの技術の開発が注目されている。
グラフトポロジによる構造化データの利用によるメリットを生かして、グラフ上の機械学習と信号処理技術の開発に重点を置いている。
グラフ信号処理(GSP)やグラフニューラルネットワーク(GNN)などの多くの技術が、データ品質向上タスクに使用されている。
本研究では,センサネットワークにおけるデータ品質制御のためのグラフベースモデルに着目した。
さらに、センサネットワークにおけるデータ品質タスクのための強力なグラフベースのソリューションを提供するために、一般的に利用される技術的詳細を掘り下げる。
結論として,デジタルツインのグラフベースモデルやモデル転送可能性,一般化など,今後のトレンドと課題を明らかにした。
関連論文リスト
- Generative AI for Data Augmentation in Wireless Networks: Analysis, Applications, and Case Study [59.780800481241066]
Generative Artificial Intelligence (GenAI) は、無線データ拡張の効果的な代替手段である。
本稿では、無線ネットワークにおけるGenAI駆動型データ拡張の可能性と有効性について考察する。
本稿では,Wi-Fiジェスチャー認識のための一般化拡散モデルに基づくデータ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-13T05:15:25Z) - Survey of Graph Neural Network for Internet of Things and NextG Networks [3.591122855617648]
グラフニューラルネットワーク(GNN)は、洞察を効果的にモデル化し抽出するための有望なパラダイムとして登場した。
この調査は、GNNの用語、アーキテクチャ、および異なるタイプのGNNについて、詳細な説明を提供する。
次に、GNNがネットワークシステムや戦術システムにどのように活用されているかについて詳細な説明を行う。
論文 参考訳(メタデータ) (2024-05-27T16:10:49Z) - Physics-Enhanced Graph Neural Networks For Soft Sensing in Industrial Internet of Things [6.374763930914524]
産業用IoT(Industrial Internet of Things)は、製造業、産業プロセス、インフラ管理を変革している。
高度に信頼性の高いIIoTを実現するには、大量のセンサーをインストールするコスト、既存のシステムにセンサーを組み直す際の制限、センサーの設置を非現実的にする厳しい環境条件などの要因が伴う。
物理の原理をグラフベースの方法論に統合する物理強化グラフニューラルネットワーク(GNN)を提案する。
論文 参考訳(メタデータ) (2024-04-11T18:03:59Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
各センサの信号の挙動を別々に検討し,相互の相関関係と隠れ関係を考慮する必要がある。
グラフノードは、異なるセンサーからのデータとして表現することができ、エッジは、これらのデータの影響を互いに表示することができる。
グラフニューラルネットワークのトレーニング中にグラフを構築する方法が提案されている。これにより、センサー間の依存関係が事前に分かっていないデータ上でモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-10-20T11:03:21Z) - Representation Learning of Knowledge Graph for Wireless Communication
Networks [21.123289598816847]
本稿では,無線通信プロトコルに基づいて知識グラフを構築することにより,無線データの内在的関係を理解することを目的とする。
グラフ畳み込みニューラルネットワークに基づく新しいモデルは、グラフノードを分類し、関係予測をシミュレートするために使用されるグラフの表現を学ぶように設計されている。
論文 参考訳(メタデータ) (2022-08-22T07:36:34Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - A Computational Framework for Modeling Complex Sensor Network Data Using
Graph Signal Processing and Graph Neural Networks in Structural Health
Monitoring [0.7519872646378835]
本稿では,グラフ信号処理(GSP)とグラフニューラルネットワーク(GNN)を組み合わせた複雑なネットワークモデリングに基づくフレームワークを提案する。
我々は,オランダの大きな橋梁のセンサデータ(ひずみ,振動)のモデル化と解析という,実世界の構造的健康モニタリングユースケースに注目した。
論文 参考訳(メタデータ) (2021-05-01T10:45:57Z) - Graph Signal Processing for Geometric Data and Beyond: Theory and
Applications [55.81966207837108]
グラフ信号処理(GSP)は、不規則な領域に存在する処理信号を可能にする。
GSP法は、幾何データとグラフの接続をブリッジすることで、統一的に幾何データに対する手法である。
最近開発されたグラフニューラルネットワーク(GNN)は、GSPの観点からこれらのネットワークの動作を解釈している。
論文 参考訳(メタデータ) (2020-08-05T03:20:16Z) - Graph signal processing for machine learning: A review and new
perspectives [57.285378618394624]
本稿では,GSPの概念とツール,例えばグラフフィルタや変換による新しい機械学習アルゴリズム開発への重要な貢献について概説する。
本稿では,データ構造とリレーショナル事前の活用,データと計算効率の向上,モデル解釈可能性の向上について論じる。
我々は,応用数学と信号処理の橋渡しとなるGSP技術と,他方の機械学習とネットワーク科学の橋渡しとなる新たな視点を提供する。
論文 参考訳(メタデータ) (2020-07-31T13:21:33Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。