論文の概要: Stealthy Jailbreak Attacks on Large Language Models via Benign Data Mirroring
- arxiv url: http://arxiv.org/abs/2410.21083v1
- Date: Mon, 28 Oct 2024 14:48:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:18:13.344659
- Title: Stealthy Jailbreak Attacks on Large Language Models via Benign Data Mirroring
- Title(参考訳): 良性データミラーリングによる大規模言語モデルに対する定常的ジェイルブレイク攻撃
- Authors: Honglin Mu, Han He, Yuxin Zhou, Yunlong Feng, Yang Xu, Libo Qin, Xiaoming Shi, Zeming Liu, Xudong Han, Qi Shi, Qingfu Zhu, Wanxiang Che,
- Abstract要約: そこで本研究では,ターゲットブラックボックスモデルのミラーモデルを良質なデータ蒸留により局所的に訓練することにより,悪意あるプロンプト構築を誘導するトランスファー攻撃法を提案する。
提案手法は最大攻撃成功率92%, バランス値80%を達成し, GPT-3.5 Turboに対して平均1.5のジェイルブレイククエリが検出された。
- 参考スコア(独自算出の注目度): 47.40698758003993
- License:
- Abstract: Large language model (LLM) safety is a critical issue, with numerous studies employing red team testing to enhance model security. Among these, jailbreak methods explore potential vulnerabilities by crafting malicious prompts that induce model outputs contrary to safety alignments. Existing black-box jailbreak methods often rely on model feedback, repeatedly submitting queries with detectable malicious instructions during the attack search process. Although these approaches are effective, the attacks may be intercepted by content moderators during the search process. We propose an improved transfer attack method that guides malicious prompt construction by locally training a mirror model of the target black-box model through benign data distillation. This method offers enhanced stealth, as it does not involve submitting identifiable malicious instructions to the target model during the search phase. Our approach achieved a maximum attack success rate of 92%, or a balanced value of 80% with an average of 1.5 detectable jailbreak queries per sample against GPT-3.5 Turbo on a subset of AdvBench. These results underscore the need for more robust defense mechanisms.
- Abstract(参考訳): 大規模言語モデル(LLM)の安全性は重要な問題であり、モデルセキュリティを強化するためにレッドチームテストを採用する多くの研究がある。
これらのうち、Jailbreakメソッドは、安全アライメントとは対照的にモデル出力を誘導する悪意のあるプロンプトを作成することで潜在的な脆弱性を探索する。
既存のブラックボックスのjailbreakメソッドは、しばしばモデルフィードバックに依存し、攻撃検索プロセス中に検出可能な悪意のある命令で繰り返しクエリを送信します。
これらのアプローチは有効であるが、この攻撃は検索プロセス中にコンテンツモデレーターによって傍受される可能性がある。
そこで本研究では,ターゲットブラックボックスモデルのミラーモデルを,良質なデータ蒸留により局所的に訓練することにより,悪意あるプロンプト構築を誘導するトランスファー攻撃手法を提案する。
この方法は、検索フェーズ中にターゲットモデルに識別可能な悪意のある命令を送信しないため、ステルスが強化される。
提案手法は,AdvBench サブセットの GPT-3.5 Turbo に対して,最大攻撃成功率 92%,平均で平均 1.5 のジェイルブレイククエリで80% のバランス値を達成した。
これらの結果は、より堅牢な防御機構の必要性を浮き彫りにした。
関連論文リスト
- Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
そこで本稿では, ガーブレッドの逆数プロンプトを, 一貫性のある, 可読性のある自然言語の逆数プロンプトに"翻訳"する手法を提案する。
また、jailbreakプロンプトの効果的な設計を発見し、jailbreak攻撃の理解を深めるための新しいアプローチも提供する。
本稿では,AdvBench上でのLlama-2-Chatモデルに対する攻撃成功率は90%以上である。
論文 参考訳(メタデータ) (2024-10-15T06:31:04Z) - You Know What I'm Saying: Jailbreak Attack via Implicit Reference [22.520950422702757]
本研究は、以前見過ごされた脆弱性を特定し、Implicit Reference (AIR) による攻撃(Attack)と呼ぶ。
AIRは悪意のある目的を許容可能な目的に分解し、コンテキスト内の暗黙の参照を通してそれらをリンクする。
我々の実験は、AIRが最先端のLLMに対して有効であることを示し、ほとんどのモデルで90%を超える攻撃成功率(ASR)を達成した。
論文 参考訳(メタデータ) (2024-10-04T18:42:57Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
本稿では,大規模言語モデル(LLM)における脱獄予防の重要性を論じる。
我々は,既存の最先端ガードレールの限界を超えるよう設計された,新しいガードレールアーキテクチャであるMoJEを紹介する。
MoJEは、モデル推論中に最小限の計算オーバーヘッドを維持しながら、ジェイルブレイク攻撃の検出に優れる。
論文 参考訳(メタデータ) (2024-09-26T10:12:19Z) - AdaPPA: Adaptive Position Pre-Fill Jailbreak Attack Approach Targeting LLMs [34.221522224051846]
大規模言語モデル(LLM)に対するジェイルブレイク攻撃を適応的に行うための適応的位置補充型ジェイルブレイク攻撃手法を提案する。
提案手法は,提案モデルの命令追従能力を利用して,まず安全なコンテンツを出力し,次にその物語シフト能力を利用して有害なコンテンツを生成する。
本手法は,従来の手法と比較して,広く認識されているセキュアモデル(Llama2)において,攻撃成功率を47%向上させることができる。
論文 参考訳(メタデータ) (2024-09-11T00:00:58Z) - Prefix Guidance: A Steering Wheel for Large Language Models to Defend Against Jailbreak Attacks [27.11523234556414]
我々は,プリフィックスガイダンス(PG)という,プラグアンドプレイで容易に配置可能なジェイルブレイク防御フレームワークを提案する。
PGは、モデルの出力の最初の数個のトークンを直接設定することで、有害なプロンプトを特定するようモデルに誘導する。
3つのモデルと5つの攻撃方法におけるPGの有効性を実証する。
論文 参考訳(メタデータ) (2024-08-15T14:51:32Z) - A StrongREJECT for Empty Jailbreaks [72.8807309802266]
StrongREJECTは、ジェイルブレイクのパフォーマンスを評価するための高品質なベンチマークである。
これは、被害者モデルが禁止されたプロンプトに対する応答の有害性を評価する。
それは、ジェイルブレイクの有効性の人間の判断と最先端の合意を達成します。
論文 参考訳(メタデータ) (2024-02-15T18:58:09Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
既存のジェイルブレイク法は計算コストがかかる。
我々は、弱々しく強固な脱獄攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-30T18:48:37Z) - Jailbroken: How Does LLM Safety Training Fail? [92.8748773632051]
ChatGPTの初期リリースに対する"jailbreak"攻撃は、望ましくない振る舞いを引き起こす。
このような攻撃がなぜ成功し、どのように発生できるかを考察する。
障害モードを利用した新たな攻撃は、安全でない要求の収集において、すべてのプロンプトで成功します。
論文 参考訳(メタデータ) (2023-07-05T17:58:10Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。