Quantum channel coding: Approximation algorithms and strong converse exponents
- URL: http://arxiv.org/abs/2410.21124v1
- Date: Mon, 28 Oct 2024 15:28:14 GMT
- Title: Quantum channel coding: Approximation algorithms and strong converse exponents
- Authors: Aadil Oufkir, Mario Berta,
- Abstract summary: We study relaxations of entanglement-assisted quantum channel coding.
Non-signaling assistance and the meta-converse are equivalent in terms of success probabilities.
- Score: 4.757470449749876
- License:
- Abstract: We study relaxations of entanglement-assisted quantum channel coding and establish that non-signaling assistance and the meta-converse are equivalent in terms of success probabilities. We then present a rounding procedure that transforms any non-signaling-assisted strategy into an entanglement-assisted one and prove an approximation ratio of $(1 - e^{-1})$ in success probabilities for the special case of measurement channels. For fully quantum channels, we give a weaker (dimension dependent) approximation ratio, that is nevertheless still tight to characterize the strong converse exponent of entanglement-assisted channel coding [Li and Yao, arXiv:2209.00555]. Our derivations leverage ideas from position-based decoding, quantum decoupling theorems, the matrix Chernoff inequality, and input flattening techniques.
Related papers
- Quantum Natural Stochastic Pairwise Coordinate Descent [6.187270874122921]
Quantum machine learning through variational quantum algorithms (VQAs) has gained substantial attention in recent years.
This paper introduces the quantum natural pairwise coordinate descent (2QNSCD) optimization method.
We develop a highly sparse unbiased estimator of the novel metric tensor using a quantum circuit with gate complexity $Theta(1)$ times that of the parameterized quantum circuit and single-shot quantum measurements.
arXiv Detail & Related papers (2024-07-18T18:57:29Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum soft-covering lemma with applications to rate-distortion coding, resolvability and identification via quantum channels [7.874708385247353]
We prove a one-shot quantum covering lemma in terms of smooth min-entropies.
We provide new upper bounds on the unrestricted and simultaneous identification capacities of quantum channels.
arXiv Detail & Related papers (2023-06-21T17:53:22Z) - Sequential Quantum Channel Discrimination [19.785872350085878]
We consider the sequential quantum channel discrimination problem using adaptive and non-adaptive strategies.
We show that both types of error probabilities decrease to zero exponentially fast.
We conjecture that the achievable rate region is not larger than that achievable with POVMs.
arXiv Detail & Related papers (2022-10-20T08:13:39Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - A hierarchy of efficient bounds on quantum capacities exploiting
symmetry [8.717253904965371]
We exploit the recently introduced $D#$ in order to obtain a hierarchy of semidefinite programming bounds on various regularized quantities.
As applications, we give a general procedure to give efficient bounds on the regularized Umegaki channel divergence.
We prove that for fixed input and output dimensions, the regularized sandwiched R'enyi divergence between any two quantum channels can be approximated up to an $epsilon$ accuracy in time.
arXiv Detail & Related papers (2022-03-04T04:34:15Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum computing critical exponents [0.0]
We show that the Variational Quantum-Classical Simulation algorithm admits a finite circuit depth scaling collapse when targeting the critical point of the transverse field Ising chain.
The order parameter only collapses on one side of the transition due to a slowdown of the quantum algorithm when crossing the phase transition.
arXiv Detail & Related papers (2021-04-02T17:38:20Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.