Retrieval-Enhanced Mutation Mastery: Augmenting Zero-Shot Prediction of Protein Language Model
- URL: http://arxiv.org/abs/2410.21127v1
- Date: Mon, 28 Oct 2024 15:28:51 GMT
- Title: Retrieval-Enhanced Mutation Mastery: Augmenting Zero-Shot Prediction of Protein Language Model
- Authors: Yang Tan, Ruilin Wang, Banghao Wu, Liang Hong, Bingxin Zhou,
- Abstract summary: Deep learning methods for protein modeling have demonstrated superior results at lower costs compared to traditional approaches.
In mutation effect prediction, the key to pre-training deep learning models lies in accurately interpreting the complex relationships among protein sequence, structure, and function.
This study introduces a retrieval-enhanced protein language model for comprehensive analysis of native properties from sequence and local structural interactions.
- Score: 3.4494754789770186
- License:
- Abstract: Enzyme engineering enables the modification of wild-type proteins to meet industrial and research demands by enhancing catalytic activity, stability, binding affinities, and other properties. The emergence of deep learning methods for protein modeling has demonstrated superior results at lower costs compared to traditional approaches such as directed evolution and rational design. In mutation effect prediction, the key to pre-training deep learning models lies in accurately interpreting the complex relationships among protein sequence, structure, and function. This study introduces a retrieval-enhanced protein language model for comprehensive analysis of native properties from sequence and local structural interactions, as well as evolutionary properties from retrieved homologous sequences. The state-of-the-art performance of the proposed ProtREM is validated on over 2 million mutants across 217 assays from an open benchmark (ProteinGym). We also conducted post-hoc analyses of the model's ability to improve the stability and binding affinity of a VHH antibody. Additionally, we designed 10 new mutants on a DNA polymerase and conducted wet-lab experiments to evaluate their enhanced activity at higher temperatures. Both in silico and experimental evaluations confirmed that our method provides reliable predictions of mutation effects, offering an auxiliary tool for biologists aiming to evolve existing enzymes. The implementation is publicly available at https://github.com/tyang816/ProtREM.
Related papers
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
We introduce a novel pre-training strategy for protein foundation models.
It emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features.
Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability.
arXiv Detail & Related papers (2024-10-31T15:22:03Z) - Learning to Predict Mutation Effects of Protein-Protein Interactions by Microenvironment-aware Hierarchical Prompt Learning [78.38442423223832]
We develop a novel codebook pre-training task, namely masked microenvironment modeling.
We demonstrate superior performance and training efficiency over state-of-the-art pre-training-based methods in mutation effect prediction.
arXiv Detail & Related papers (2024-05-16T03:53:21Z) - Protein binding affinity prediction under multiple substitutions applying eGNNs on Residue and Atomic graphs combined with Language model information: eGRAL [1.840390797252648]
Deep learning is increasingly recognized as a powerful tool capable of bridging the gap between in-silico predictions and in-vitro observations.
We propose eGRAL, a novel graph neural network architecture designed for predicting binding affinity changes from amino acid substitutions in protein complexes.
eGRAL leverages residue, atomic and evolutionary scales, thanks to features extracted from protein large language models.
arXiv Detail & Related papers (2024-05-03T10:33:19Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
The ability to precisely predict protein thermostability is pivotal for various subfields and applications in biochemistry.
We introduce an ESM-assisted efficient approach that integrates protein sequence and structural features to predict the thermostability changes in protein upon single-point mutations.
arXiv Detail & Related papers (2023-12-07T03:25:49Z) - Multi-level Protein Representation Learning for Blind Mutational Effect
Prediction [5.207307163958806]
This paper introduces a novel pre-training framework that cascades sequential and geometric analyzers for protein structures.
It guides mutational directions toward desired traits by simulating natural selection on wild-type proteins.
We assess the proposed approach using a public database and two new databases for a variety of variant effect prediction tasks.
arXiv Detail & Related papers (2023-06-08T03:00:50Z) - Accurate and Definite Mutational Effect Prediction with Lightweight
Equivariant Graph Neural Networks [2.381587712372268]
This research introduces a lightweight graph representation learning scheme that efficiently analyzes the microenvironment of wild-type proteins.
Our solution offers a wide range of benefits that make it an ideal choice for the community.
arXiv Detail & Related papers (2023-04-13T09:51:49Z) - Plug & Play Directed Evolution of Proteins with Gradient-based Discrete
MCMC [1.0499611180329804]
A long-standing goal of machine-learning-based protein engineering is to accelerate the discovery of novel mutations.
We introduce a sampling framework for evolving proteins in silico that supports mixing and matching a variety of unsupervised models.
By composing these models, we aim to improve our ability to evaluate unseen mutations and constrain search to regions of sequence space likely to contain functional proteins.
arXiv Detail & Related papers (2022-12-20T00:26:23Z) - Protein language model rescue mutations highlight variant effects and
structure in clinically relevant genes [1.7970523486905976]
We interrogate the use of protein language models in characterizing known pathogenic mutations in curated, medically actionable genes.
Systematic analysis of the predicted effects of these compensatory mutations reveal unappreciated structural features of proteins.
We encourage the community to generate and curate rescue mutation experiments to inform the design of more sophisticated co-masking strategies.
arXiv Detail & Related papers (2022-11-18T03:00:52Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Using Genetic Programming to Predict and Optimize Protein Function [65.25258357832584]
We propose POET, a computational Genetic Programming tool based on evolutionary methods to enhance screening and mutagenesis in Directed Evolution.
As a proof-of-concept we use peptides that generate MRI contrast detected by the Chemical Exchange Saturation Transfer mechanism.
Our results indicate that a computational modelling tool like POET can help to find peptides with 400% better functionality than used before.
arXiv Detail & Related papers (2022-02-08T18:08:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.