論文の概要: Fast Calibrated Explanations: Efficient and Uncertainty-Aware Explanations for Machine Learning Models
- arxiv url: http://arxiv.org/abs/2410.21129v1
- Date: Mon, 28 Oct 2024 15:29:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:19:51.239008
- Title: Fast Calibrated Explanations: Efficient and Uncertainty-Aware Explanations for Machine Learning Models
- Title(参考訳): 高速校正説明:機械学習モデルのための効率的かつ不確実性を考慮した説明
- Authors: Tuwe Löfström, Fatima Rabia Yapicioglu, Alessandra Stramiglio, Helena Löfström, Fabio Vitali,
- Abstract要約: 本稿では,機械学習モデルに対する高速かつ不確実な説明を生成する手法であるFast Calibrated Explanationsを紹介する。
ConformaSightの摂動手法をCalibrated Explanationsのコア要素に組み込むことで,大幅な高速化を実現する。
この新しい手法は細部を犠牲にするが、計算効率は優れており、高速でリアルタイムなアプリケーションに最適である。
- 参考スコア(独自算出の注目度): 41.82622187379551
- License:
- Abstract: This paper introduces Fast Calibrated Explanations, a method designed for generating rapid, uncertainty-aware explanations for machine learning models. By incorporating perturbation techniques from ConformaSight - a global explanation framework - into the core elements of Calibrated Explanations (CE), we achieve significant speedups. These core elements include local feature importance with calibrated predictions, both of which retain uncertainty quantification. While the new method sacrifices a small degree of detail, it excels in computational efficiency, making it ideal for high-stakes, real-time applications. Fast Calibrated Explanations are applicable to probabilistic explanations in classification and thresholded regression tasks, where they provide the likelihood of a target being above or below a user-defined threshold. This approach maintains the versatility of CE for both classification and probabilistic regression, making it suitable for a range of predictive tasks where uncertainty quantification is crucial.
- Abstract(参考訳): 本稿では,機械学習モデルに対する高速かつ不確実な説明を生成する手法であるFast Calibrated Explanationsを紹介する。
グローバルな説明フレームワークであるConformaSightの摂動テクニックをCalibrated Explanations (CE)のコア要素に組み込むことで、大幅なスピードアップを実現しています。
これらの中核要素には、不確かさの定量化を保持するキャリブレーションされた予測を伴う局所的な特徴の重要性が含まれる。
この新しい手法は細部を犠牲にするが、計算効率は優れており、高速でリアルタイムなアプリケーションに最適である。
高速校正説明は、分類としきい値回帰タスクの確率論的説明に適用できる。
このアプローチは、分類と確率回帰の両方においてCEの汎用性を維持し、不確実な定量化が不可欠である様々な予測タスクに適合する。
関連論文リスト
- Accelerating Large Language Model Inference with Self-Supervised Early Exits [0.0]
本稿では,大規模・事前学習型言語モデル(LLM)における推論を高速化する新しい手法を提案する。
本稿では,既存の変圧器層上に早期出口「頭部」を統合し,信頼度基準に基づく条件付き項化を容易にすることを提案する。
論文 参考訳(メタデータ) (2024-07-30T07:58:28Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
本稿では,自己注意ネットワークのためのパラメータ効率の高いディープアンサンブル手法であるLoRA-Ensembleを紹介する。
全メンバー間で重みを共有できる1つの事前学習型自己注意ネットワークを利用することで、注意投影のために、メンバー固有の低ランク行列を訓練する。
提案手法は明示的なアンサンブルよりも優れたキャリブレーションを示し,様々な予測タスクやデータセットに対して類似あるいは良好な精度を実現する。
論文 参考訳(メタデータ) (2024-05-23T11:10:32Z) - Conformal Predictions for Probabilistically Robust Scalable Machine Learning Classification [1.757077789361314]
コンフォーマルな予測により、信頼性と堅牢な学習アルゴリズムを定義することができる。
基本的には、アルゴリズムが実際に使われるのに十分であるかどうかを評価する方法である。
本稿では,設計当初から信頼性の高い分類学習フレームワークを定義した。
論文 参考訳(メタデータ) (2024-03-15T14:59:24Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
本稿では,機械学習モデルに対する確率論的原因・効果説明を提供するLaPLACE-Explainerを紹介する。
LaPLACE-Explainerコンポーネントはマルコフ毛布の概念を利用して、関連する特徴と非関連する特徴の間の統計的境界を確立する。
提案手法は,LIME と SHAP の局所的精度と特徴の整合性の観点から,因果的説明と性能を向上する。
論文 参考訳(メタデータ) (2023-10-01T04:09:59Z) - Calibrated Explanations for Regression [1.2058600649065616]
回帰のための校正的説明は、高速で信頼性があり、安定し、堅牢な説明を提供する。
確率的回帰のための校正的説明は、説明を作成する全く新しい方法を提供する。
Pythonの実装はGitHubで無料で利用可能で、pipとcondaの両方を使ってインストールすることができる。
論文 参考訳(メタデータ) (2023-08-30T18:06:57Z) - Calibrated Explanations: with Uncertainty Information and
Counterfactuals [0.1843404256219181]
Calibrated Explanations (CE)はVenn-Abersの基礎の上に構築されている。
これは特徴量とモデルの確率推定の両方に対して不確実な定量化を提供する。
25のベンチマークデータセットによる評価の結果は,CEの有効性を裏付けるものだった。
論文 参考訳(メタデータ) (2023-05-03T17:52:41Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Hybrid Predictive Coding: Inferring, Fast and Slow [62.997667081978825]
本稿では,反復型と償却型の両方を原則的に組み合わせたハイブリッド予測符号化ネットワークを提案する。
我々は,本モデルが本質的に不確実性に敏感であり,最小計算費用を用いて正確な信念を得るためにバランスを適応的にバランスさせることを実証した。
論文 参考訳(メタデータ) (2022-04-05T12:52:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。