論文の概要: EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation
- arxiv url: http://arxiv.org/abs/2410.21271v1
- Date: Mon, 28 Oct 2024 17:59:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:18:11.685562
- Title: EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation
- Title(参考訳): EoRA:Eigenspace Low-Rank Approximationを用いた圧縮LDMのトレーニング不要補償
- Authors: Shih-Yang Liu, Huck Yang, Chein-Yi Wang, Nai Chit Fung, Hongxu Yin, Charbel Sakr, Saurav Muralidharan, Kwang-Ting Cheng, Jan Kautz, Yu-Chiang Frank Wang, Pavlo Molchanov, Min-Hung Chen,
- Abstract要約: EoRAは、圧縮されたLLaMA2/3モデルの様々なタスクにおけるエラーを補償する従来の手法より一貫して優れている。
EoRAは、圧縮エラーを補うスケーラブルでトレーニング不要なソリューションを提供する。
- 参考スコア(独自算出の注目度): 76.72669153805018
- License:
- Abstract: In this work, we re-formulate the model compression problem into the customized compensation problem: Given a compressed model, we aim to introduce residual low-rank paths to compensate for compression errors under customized requirements from users (e.g., tasks, compression ratios), resulting in greater flexibility in adjusting overall capacity without being constrained by specific compression formats. However, naively applying SVD to derive residual paths causes suboptimal utilization of the low-rank representation capacity. Instead, we propose Training-free Eigenspace Low-Rank Approximation (EoRA), a method that directly minimizes compression-induced errors without requiring gradient-based training, achieving fast optimization in minutes using a small amount of calibration data. EoRA projects compression errors into the eigenspace of input activations, leveraging eigenvalues to effectively prioritize the reconstruction of high-importance error components. Moreover, EoRA can be seamlessly integrated with fine-tuning and quantization to further improve effectiveness and efficiency. EoRA consistently outperforms previous methods in compensating errors for compressed LLaMA2/3 models on various tasks, such as language generation, commonsense reasoning, and math reasoning tasks (e.g., 31.31%/12.88% and 9.69% improvements on ARC-Easy/ARC-Challenge and MathQA when compensating LLaMA3-8B that is quantized to 4-bit and pruned to 2:4 sparsity). EoRA offers a scalable, training-free solution to compensate for compression errors, making it a powerful tool to deploy LLMs in various capacity and efficiency requirements.
- Abstract(参考訳): 本研究は,モデル圧縮問題をカスタマイズされた補償問題に再構成する: 圧縮されたモデルが与えられた場合,ユーザ(タスク,圧縮比率など)のカスタマイズされた要求の下で圧縮エラーを補償する残差の低ランクパスを導入し,特定の圧縮フォーマットに制約されることなく,全体的な容量調整の柔軟性を高めることを目的とする。
しかし、残留経路の導出にSVDを間接的に適用すると、低ランク表現能力が最適以下に活用される。
その代わりに、勾配に基づくトレーニングを必要とせずに直接圧縮誘起誤差を最小化し、少量のキャリブレーションデータを用いて数分で高速な最適化を実現するEoRA(Training-free Eigenspace Low-Rank Approximation)を提案する。
EoRAは、圧縮エラーを入力アクティベーションの固有空間に投影し、固有値を利用して、高重要性のエラーコンポーネントの再構成を効果的に優先順位付けする。
さらに、EoRAを微調整や量子化とシームレスに統合することで、効率と効率をさらに向上することができる。
EoRAは、圧縮されたLLaMA2/3モデルの誤りを言語生成、コモンセンス推論、数学推論タスク(例えば、ARC-Easy/ARC-ChallengeとMathQAの9.69%の改善)で補うことで、従来の方法よりずっと優れていた。
EoRAは、圧縮エラーを補償するスケーラブルでトレーニング不要なソリューションを提供する。
関連論文リスト
- SpaLLM: Unified Compressive Adaptation of Large Language Models with Sketching [32.4599581528901]
Two-towerアーキテクチャは、事前学習したLLMパラメータをコンパクトな表現に圧縮し、付加的な完全精度アダプタを微調整するために用いられる。
Sketched Adapting of LLMs (Sketched Adapting of LLMs) を提案する。
SpaLLMは事前訓練したLLM重量をルックアップテーブルにスケッチし、これらのテーブルの値を直接微調整する。
論文 参考訳(メタデータ) (2024-10-08T20:58:24Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) は低ランク行列のみを最適化することでモデルを微調整する効率的な方法である。
ロラ空間に平坦に見える解は、全パラメータ空間に鋭い方向が存在し、一般化性能を損なう可能性がある。
フルパラメータ空間の平坦領域に位置する低ランク適応を求める効率的なアプローチであるFlat-LoRAを提案する。
論文 参考訳(メタデータ) (2024-09-22T11:24:10Z) - Accelerating Communication in Deep Learning Recommendation Model Training with Dual-Level Adaptive Lossy Compression [10.233937665979694]
DLRMは最先端のレコメンデーションシステムモデルであり、様々な業界アプリケーションで広く採用されている。
このプロセスの重大なボトルネックは、すべてのデバイスから埋め込みデータを集めるのに必要な全通信に時間を要することだ。
本稿では,通信データサイズを削減し,DLRMトレーニングを高速化するために,エラーバウンドの損失圧縮を利用する手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T05:55:18Z) - Differential error feedback for communication-efficient decentralized learning [48.924131251745266]
本稿では,差分量子化と誤りフィードバックをブレンドする分散通信効率学習手法を提案する。
その結果,平均二乗誤差と平均ビットレートの両面において通信効率が安定であることが示唆された。
その結果、小さなステップサイズで有限ビットの場合には、圧縮がない場合に達成可能な性能が得られることが判明した。
論文 参考訳(メタデータ) (2024-06-26T15:11:26Z) - ALPS: Improved Optimization for Highly Sparse One-Shot Pruning for Large Language Models [14.310720048047136]
ALPSは,演算子分割法と事前条件付き勾配共役型後処理法を用いて,プルーニング問題に対処する最適化ベースのフレームワークである。
提案手法はベクトル化とGPU並列性を有効利用しながら収束を加速し理論的に保証する新しい手法を取り入れている。
OPT-30Bモデルでは70%の間隔で、ALPSはWikiTextデータセットにおけるテストの難易度を13%削減し、既存の手法と比較してゼロショットベンチマークのパフォーマンスを19%改善した。
論文 参考訳(メタデータ) (2024-06-12T02:57:41Z) - PYRA: Parallel Yielding Re-Activation for Training-Inference Efficient Task Adaptation [61.57833648734164]
本稿では, PYRA(Parallel Yielding Re-Activation)法を提案する。
PYRAは低圧縮率と高圧縮率の両方で競合する全ての手法より優れている。
論文 参考訳(メタデータ) (2024-03-14T09:06:49Z) - Communication-Efficient Distributed Learning with Local Immediate Error
Compensation [95.6828475028581]
本稿では,局所的即時誤差補償SGD (LIEC-SGD) 最適化アルゴリズムを提案する。
LIEC-SGDは、コンバージェンスレートまたは通信コストのいずれにおいても、以前の研究よりも優れている。
論文 参考訳(メタデータ) (2024-02-19T05:59:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。