Comparative Global AI Regulation: Policy Perspectives from the EU, China, and the US
- URL: http://arxiv.org/abs/2410.21279v1
- Date: Sat, 05 Oct 2024 18:08:48 GMT
- Title: Comparative Global AI Regulation: Policy Perspectives from the EU, China, and the US
- Authors: Jon Chun, Christian Schroeder de Witt, Katherine Elkins,
- Abstract summary: This paper compares three distinct approaches taken by the EU, China and the US.
Within the US, we explore AI regulation at both the federal and state level, with a focus on California's pending Senate Bill 1047.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a powerful and rapidly advancing dual-use technology, AI offers both immense benefits and worrisome risks. In response, governing bodies around the world are developing a range of regulatory AI laws and policies. This paper compares three distinct approaches taken by the EU, China and the US. Within the US, we explore AI regulation at both the federal and state level, with a focus on California's pending Senate Bill 1047. Each regulatory system reflects distinct cultural, political and economic perspectives. Each also highlights differing regional perspectives on regulatory risk-benefit tradeoffs, with divergent judgments on the balance between safety versus innovation and cooperation versus competition. Finally, differences between regulatory frameworks reflect contrastive stances in regards to trust in centralized authority versus trust in a more decentralized free market of self-interested stakeholders. Taken together, these varied approaches to AI innovation and regulation influence each other, the broader international community, and the future of AI regulation.
Related papers
- Navigating AI Policy Landscapes: Insights into Human Rights Considerations Across IEEE Regions [0.0]
This paper explores the integration of human rights considerations into AI regulatory frameworks across different IEEE regions.
The U.S. promotes innovation with less restrictive regulations, while Europe exhibits stringent protections for individual rights.
China emphasizes state control and societal order in its AI strategies, while Singapore's advisory framework encourages self-regulation.
arXiv Detail & Related papers (2025-04-27T14:44:42Z) - Towards Adaptive AI Governance: Comparative Insights from the U.S., EU, and Asia [0.0]
This study conducts a comparative analysis of AI trends in the United States (US), the European Union (EU), and Asia.
It focuses on three key dimensions: generative AI, ethical oversight, and industrial applications.
The US prioritizes market-driven innovation with minimal regulatory constraints, the EU enforces a precautionary risk-based framework emphasizing ethical safeguards, and Asia employs state-guided AI strategies that balance rapid deployment with regulatory oversight.
arXiv Detail & Related papers (2025-04-01T11:05:47Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.
Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - Nirvana AI Governance: How AI Policymaking Is Committing Three Old Fallacies [8.168523242105763]
I expose fundamental flaws in the current AI regulatory proposal.
Some commentators intuitively believe that people are more reliable than machines.
Some policymakers and researchers do not realize and even gloss over the fact that harms and costs are also inherent in their proposals.
arXiv Detail & Related papers (2024-12-18T07:47:22Z) - AI, Global Governance, and Digital Sovereignty [1.3976439685325095]
We argue that AI systems will embed in global governance to create dueling dynamics of public/private cooperation and contestation.
We conclude by sketching future directions for IR research on AI and global governance.
arXiv Detail & Related papers (2024-10-23T00:05:33Z) - AI Risk Categorization Decoded (AIR 2024): From Government Regulations to Corporate Policies [88.32153122712478]
We identify 314 unique risk categories organized into a four-tiered taxonomy.
At the highest level, this taxonomy encompasses System & Operational Risks, Content Safety Risks, Societal Risks, and Legal & Rights Risks.
We aim to advance AI safety through information sharing across sectors and the promotion of best practices in risk mitigation for generative AI models and systems.
arXiv Detail & Related papers (2024-06-25T18:13:05Z) - AI Risk Management Should Incorporate Both Safety and Security [185.68738503122114]
We argue that stakeholders in AI risk management should be aware of the nuances, synergies, and interplay between safety and security.
We introduce a unified reference framework to clarify the differences and interplay between AI safety and AI security.
arXiv Detail & Related papers (2024-05-29T21:00:47Z) - Securing the Future of GenAI: Policy and Technology [50.586585729683776]
Governments globally are grappling with the challenge of regulating GenAI, balancing innovation against safety.
A workshop co-organized by Google, University of Wisconsin, Madison, and Stanford University aimed to bridge this gap between GenAI policy and technology.
This paper summarizes the discussions during the workshop which addressed questions, such as: How regulation can be designed without hindering technological progress?
arXiv Detail & Related papers (2024-05-21T20:30:01Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - Regulation and NLP (RegNLP): Taming Large Language Models [51.41095330188972]
We argue how NLP research can benefit from proximity to regulatory studies and adjacent fields.
We advocate for the development of a new multidisciplinary research space on regulation and NLP.
arXiv Detail & Related papers (2023-10-09T09:22:40Z) - AI Regulation in Europe: From the AI Act to Future Regulatory Challenges [3.0821115746307663]
It argues for a hybrid regulatory strategy that combines elements from both philosophies.
The paper examines the AI Act as a pioneering legislative effort to address the multifaceted challenges posed by AI.
It advocates for immediate action to create protocols for regulated access to high-performance, potentially open-source AI systems.
arXiv Detail & Related papers (2023-10-06T07:52:56Z) - Bridging the Global Divide in AI Regulation: A Proposal for a Contextual, Coherent, and Commensurable Framework [0.9622882291833615]
This paper proposes an alternative contextual, coherent, and commensurable (3C) framework for regulating artificial intelligence (AI)
To ensure contextuality, the framework bifurcates the AI life cycle into two phases: learning and deployment for specific tasks, instead of defining foundation or general-purpose models.
To ensure commensurability, the framework promotes the adoption of international standards for measuring and mitigating risks.
arXiv Detail & Related papers (2023-03-20T15:23:40Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Regulating Artificial Intelligence: Proposal for a Global Solution [6.037312672659089]
We argue that AI-related challenges cannot be tackled effectively without sincere international coordination.
We propose the establishment of an international AI governance framework organized around a new AI regulatory agency.
arXiv Detail & Related papers (2020-05-22T09:24:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.