Nirvana AI Governance: How AI Policymaking Is Committing Three Old Fallacies
- URL: http://arxiv.org/abs/2501.10384v1
- Date: Wed, 18 Dec 2024 07:47:22 GMT
- Title: Nirvana AI Governance: How AI Policymaking Is Committing Three Old Fallacies
- Authors: Jiawei Zhang,
- Abstract summary: I expose fundamental flaws in the current AI regulatory proposal.<n>Some commentators intuitively believe that people are more reliable than machines.<n>Some policymakers and researchers do not realize and even gloss over the fact that harms and costs are also inherent in their proposals.
- Score: 8.168523242105763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research applies Harold Demsetz's concept of the nirvana approach to the realm of AI governance and debunks three common fallacies in various AI policy proposals--"the grass is always greener on the other side," "free lunch," and "the people could be different." Through this, I expose fundamental flaws in the current AI regulatory proposal. First, some commentators intuitively believe that people are more reliable than machines and that government works better in risk control than companies' self-regulation, but they do not fully compare the differences between the status quo and the proposed replacements. Second, when proposing some regulatory tools, some policymakers and researchers do not realize and even gloss over the fact that harms and costs are also inherent in their proposals. Third, some policy proposals are initiated based on a false comparison between the AI-driven world, where AI does lead to some risks, and an entirely idealized world, where no risk exists at all. However, the appropriate approach is to compare the world where AI causes risks to the real world where risks are everywhere, but people can live well with these risks. The prevalence of these fallacies in AI governance underscores a broader issue: the tendency to idealize potential solutions without fully considering their real-world implications. This idealization can lead to regulatory proposals that are not only impractical but potentially harmful to innovation and societal progress.
Related papers
- Public Opinion and The Rise of Digital Minds: Perceived Risk, Trust, and Regulation Support [4.982210700018631]
This study examines how public trust in institutions and AI technologies, along with perceived risks, shape preferences for AI regulation.
Individuals with higher trust in government favor regulation, while those with greater trust in AI companies and AI technologies are less inclined to support restrictions.
arXiv Detail & Related papers (2025-04-30T17:56:23Z) - Fully Autonomous AI Agents Should Not be Developed [58.88624302082713]
This paper argues that fully autonomous AI agents should not be developed.<n>In support of this position, we build from prior scientific literature and current product marketing to delineate different AI agent levels.<n>Our analysis reveals that risks to people increase with the autonomy of a system.
arXiv Detail & Related papers (2025-02-04T19:00:06Z) - Shaping AI's Impact on Billions of Lives [27.78474296888659]
We argue for the community of AI practitioners to consciously and proactively work for the common good.<n>This paper offers a blueprint for a new type of innovation infrastructure.
arXiv Detail & Related papers (2024-12-03T16:29:37Z) - Artificial intelligence, rationalization, and the limits of control in the public sector: the case of tax policy optimization [0.0]
We show how much of the criticisms directed towards AI systems spring from well known tensions at the heart of Weberian rationalization.
Our analysis shows that building a machine-like tax system that promotes social and economic equality is possible.
It also highlights that AI driven policy optimization comes at the exclusion of other competing political values.
arXiv Detail & Related papers (2024-07-07T11:54:14Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source Generative AI.
arXiv Detail & Related papers (2024-04-25T21:14:24Z) - Taking control: Policies to address extinction risks from AI [0.0]
We argue that voluntary commitments from AI companies would be an inappropriate and insufficient response.
We describe three policy proposals that would meaningfully address the threats from advanced AI.
arXiv Detail & Related papers (2023-10-31T15:53:14Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Both eyes open: Vigilant Incentives help Regulatory Markets improve AI
Safety [69.59465535312815]
Regulatory Markets for AI is a proposal designed with adaptability in mind.
It involves governments setting outcome-based targets for AI companies to achieve.
We warn that it is alarmingly easy to stumble on incentives which would prevent Regulatory Markets from achieving this goal.
arXiv Detail & Related papers (2023-03-06T14:42:05Z) - Three lines of defense against risks from AI [0.0]
It is not always clear who is responsible for AI risk management.
The Three Lines of Defense (3LoD) model is considered best practice in many industries.
I suggest ways in which AI companies could implement the model.
arXiv Detail & Related papers (2022-12-16T09:33:00Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.