Stabilizing Non-Abelian Topological Order against Heralded Noise via Local Lindbladian Dynamics
- URL: http://arxiv.org/abs/2410.21402v1
- Date: Mon, 28 Oct 2024 18:07:23 GMT
- Title: Stabilizing Non-Abelian Topological Order against Heralded Noise via Local Lindbladian Dynamics
- Authors: Sanket Chirame, Abhinav Prem, Sarang Gopalakrishnan, Fiona J. Burnell,
- Abstract summary: We show how robust steady-state phases with both Abelian and non-Abelian mixed-state topological order can be stabilized against generic heralded" noise.
These topologically ordered steady states are two-way connected to pure topologically ordered ground states using local quantum channels.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An important open question for the current generation of highly controllable quantum devices is understanding which phases can be realized as stable steady-states under local quantum dynamics. In this work, we show how robust steady-state phases with both Abelian and non-Abelian mixed-state topological order can be stabilized against generic ``heralded" noise using active dynamics that incorporate measurement and feedback, modeled as a $\textit{fully local}$ Lindblad master equation. These topologically ordered steady states are two-way connected to pure topologically ordered ground states using local quantum channels, and preserve quantum information for a time that is exponentially large in the system size. Specifically, we present explicit constructions of families of local Lindbladians for both Abelian ($\mathbb{Z}_2$) and non-Abelian ($D_4$) topological order whose steady-states host mixed-state topological order when the noise is below a threshold strength. As the noise strength is increased, these models exhibit first-order transitions to intermediate mixed state phases where they encode robust classical memories, followed by (first-order) transitions to a trivial steady state at high noise rates. When the noise is imperfectly heralded, steady-state order disappears but our active dynamics significantly enhances the lifetime of the encoded logical information. To carry out the numerical simulations for the non-Abelian $D_4$ case, we introduce a generalized stabilizer tableau formalism that permits efficient simulation of the non-Abelian Lindbladian dynamics.
Related papers
- Dynamical generation of geometric squeezing in interacting Bose-Einstein condensates [21.448766267828294]
We study the geometrically squeezed state of Bose-Einstein condensates (BECs)<n>For interacting BECs with two-body collisions, a similar quench only results in quantum fluctuations oscillating periodically without squeezing.<n>By strategically breaking the stability criteria, we propose a dynamical approach for generating squeezing that can exponentially suppress quantum fluctuations in a relatively short time.
arXiv Detail & Related papers (2025-08-06T06:50:03Z) - Free Fermion Dynamics with Measurements: Topological Classification and Adaptive Preparation of Topological States [0.0]
We develop a general framework for classifying fermionic dynamical systems with measurements using symmetry and topology.<n>In the free-fermion limit, these two frameworks are in one-to-one correspondence and yield equivalent topological classifications of area-law entangled dynamical phases.
arXiv Detail & Related papers (2025-07-17T18:00:01Z) - Quantum and Semi-Classical Signatures of Dissipative Chaos in the Steady State [0.40498500266986387]
We investigate the quantum-classical correspondence in open quantum many-body systems using the SU(3) Bose-Hubbard trimer as a minimal model.<n>We show that classical dynamical behavior, as quantified by the sign of the Lyapunov exponent, governs the level statistics of the steady-state density matrix.
arXiv Detail & Related papers (2025-06-17T20:21:06Z) - Mixed-State Topological Order under Coherent Noises [2.8391355909797644]
We find remarkable stability of mixed-state topological order under random rotation noise with axes near the $Y$-axis of qubits.
The upper bounds for the intrinsic error threshold are determined by these phase boundaries, beyond which quantum error correction becomes impossible.
arXiv Detail & Related papers (2024-11-05T19:00:06Z) - Robust preparation of ground state phases under noisy imaginary time evolution [0.0]
We consider a non-unitary ITE "circuit" subjected to a variety of noise models.
We find that the ground state order and associated phase transition persist in the presence of noise.
arXiv Detail & Related papers (2024-06-06T17:29:12Z) - Emergence of noise-induced barren plateaus in arbitrary layered noise models [44.99833362998488]
In variational quantum algorithms the parameters of a parameterized quantum circuit are optimized in order to minimize a cost function that encodes the solution of the problem.
We discuss how, and in which sense, the phenomenon of noise-induced barren plateaus emerges in parameterized quantum circuits with a layered noise model.
arXiv Detail & Related papers (2023-10-12T15:18:27Z) - Defining stable phases of open quantum systems [0.0]
We show that uniformity is satisfied in a canonical classical cellular automaton.
We conjecture some sufficient conditions for a channel to exhibit uniformity and therefore stability.
arXiv Detail & Related papers (2023-08-28T17:55:31Z) - Cyclic nonlinear interferometry with entangled non-Gaussian spin states [16.664397200920767]
We propose an efficient nonlinear readout scheme for entangled non-Gaussian spin states (ENGSs)
We focus on two well-known spin models of twist-and-turn (TNT) and two-axis-counter-twisting (TACT), where ENGS can be generated by spin dynamics starting from unstable fixed points.
arXiv Detail & Related papers (2023-04-18T09:59:17Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Dynamical transitions from slow to fast relaxation in random open
quantum systems [0.0]
We study a model in which the system Hamiltonian and its couplings to the noise are random matrices whose entries decay as power laws of distance.
The steady state is always featureless, but the rate at which it is approached exhibits three phases depending on $alpha_H$ and $alpha_L$.
Within perturbation theory, the phase boundaries in the $(alpha_H, alpha_L)$ plane differ for weak and strong dissipation, suggesting phase transitions as a function of noise strength.
arXiv Detail & Related papers (2022-11-23T20:56:46Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Peratic Phase Transition by Bulk-to-Surface Response [26.49714398456829]
We show a duality between many-body dynamics and static Hamiltonian ground states for both classical and quantum systems.
Our prediction of peratic phase transition has direct consequences in quantum simulation platforms such as Rydberg atoms and superconducting qubits.
arXiv Detail & Related papers (2021-09-27T18:00:01Z) - Phase-Integral Formulation of Dynamically Assisted Schwinger Pair
Production [68.8204255655161]
We present a phase-integral formulation of dynamically assisted Schwinger pair production of scalar charges.
We find pair production density under a strong low-frequency field and a weak high-frequency field.
arXiv Detail & Related papers (2021-09-21T15:48:22Z) - Distinguishing Phases via Non-Markovian Dynamics of Entanglement in
Topological Quantum Codes under Parallel Magnetic Field [0.0]
Localizable entanglement is studied on nontrivial loops of topological quantum codes with parallel magnetic field.
We study the behavior of these lower bounds in the vicinity of the topological to nontopological quantum phase transition of the system.
We find that in the case of the non-Markovian dephasing noise, at large time, the canonical measurement-based lower bound oscillates with a larger amplitude.
arXiv Detail & Related papers (2021-08-25T12:23:40Z) - Noisy Recurrent Neural Networks [45.94390701863504]
We study recurrent neural networks (RNNs) trained by injecting noise into hidden states as discretizations of differential equations driven by input data.
We find that, under reasonable assumptions, this implicit regularization promotes flatter minima; it biases towards models with more stable dynamics; and, in classification tasks, it favors models with larger classification margin.
Our theory is supported by empirical results which demonstrate improved robustness with respect to various input perturbations, while maintaining state-of-the-art performance.
arXiv Detail & Related papers (2021-02-09T15:20:50Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.