論文の概要: Accelerated, Robust Lower-Field Neonatal MRI with Generative Models
- arxiv url: http://arxiv.org/abs/2410.21602v1
- Date: Mon, 28 Oct 2024 23:12:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:38:47.886683
- Title: Accelerated, Robust Lower-Field Neonatal MRI with Generative Models
- Title(参考訳): 生成モデルを用いた低磁場低磁場核磁気共鳴画像の高速化
- Authors: Yamin Arefeen, Brett Levac, Jonathan I. Tamir,
- Abstract要約: 新生児MRI(Neonatal Magnetic Resonance Imaging)は、早期発達期における脳の異常の非侵襲的評価を可能にする。
近年、新生児集中治療ユニット(NICU)の移植性とアクセスのために磁場強度をトレードオフする低磁場(すなわち1.5テスラ以下)MRIシステムへの関心が高まっている。
この研究は、拡散に基づく生成モデルと信号処理に基づくモーションモデリングにより、運動堅牢性を改善し、低磁場新生児MRIを加速する。
- 参考スコア(独自算出の注目度): 2.508200203858861
- License:
- Abstract: Neonatal Magnetic Resonance Imaging (MRI) enables non-invasive assessment of potential brain abnormalities during the critical phase of early life development. Recently, interest has developed in lower field (i.e., below 1.5 Tesla) MRI systems that trade-off magnetic field strength for portability and access in the neonatal intensive care unit (NICU). Unfortunately, lower-field neonatal MRI still suffers from long scan times and motion artifacts that can limit its clinical utility for neonates. This work improves motion robustness and accelerates lower field neonatal MRI through diffusion-based generative modeling and signal processing based motion modeling. We first gather a training dataset of clinical neonatal MRI images. Then we train a diffusion-based generative model to learn the statistical distribution of fully-sampled images by applying several signal processing methods to handle the lower signal-to-noise ratio and lower quality of our MRI images. Finally, we present experiments demonstrating the utility of our generative model to improve reconstruction performance across two tasks: accelerated MRI and motion correction.
- Abstract(参考訳): 新生児MRI(Neonatal Magnetic Resonance Imaging)は、早期発達期における脳の異常の非侵襲的評価を可能にする。
近年、新生児集中治療ユニット(NICU)の移植性とアクセスのために磁場強度をトレードオフする低磁場(つまり1.5テスラ以下)MRIシステムへの関心が高まっている。
残念なことに、低磁場の新生児MRIは、まだ長いスキャン時間と、新生児の臨床的有用性を制限できるモーションアーティファクトに悩まされている。
この研究は、拡散に基づく生成モデルと信号処理に基づくモーションモデリングにより、運動堅牢性を改善し、低磁場新生児MRIを加速する。
われわれはまず,新生児MRI画像のトレーニングデータセットを収集する。
そこで我々は拡散モデルを用いて,MRI画像の低信号-雑音比と低品質の処理に複数の信号処理手法を適用することにより,完全サンプル画像の統計的分布を学習する。
最後に,MRIと運動補正の2つのタスクで再現性能を向上させるために,生成モデルの有用性を実証する実験を行った。
関連論文リスト
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
圧縮センシングMRI(Compressed Sensing MRI)は、身体の内部解剖像をアンダーサンプルと圧縮された測定値から再構成する。
ディープニューラルネットワークは、高度にアンサンプされた測定結果から高品質なイメージを再構築する大きな可能性を示している。
CS-MRIにおけるサブサンプリングパターンや画像解像度に頑健な統一モデルを提案する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - CL-MRI: Self-Supervised Contrastive Learning to Improve the Accuracy of Undersampled MRI Reconstruction [25.078280843551322]
コントラスト学習を用いた自己教師付き事前訓練手法を導入し,MRI画像再構成の精度を向上する。
本実験は, 各種加速度因子およびデータセットの再構成精度の向上を実証した。
論文 参考訳(メタデータ) (2023-06-01T10:29:58Z) - Generative AI for Rapid Diffusion MRI with Improved Image Quality,
Reliability and Generalizability [3.6119644566822484]
我々は,Human Connectome Projectデータに基づいて訓練されたSwin UNEt Transformersモデルを用いて,dMRIの一般化復調を行う。
成人健常者におけるHCPデータを用いた超解像実験を行った。
高速拡散テンソル画像の精度と信頼性は,90秒のスキャン時間しか必要としない。
論文 参考訳(メタデータ) (2023-03-10T03:39:23Z) - DDM$^2$: Self-Supervised Diffusion MRI Denoising with Generative
Diffusion Models [0.3149883354098941]
本稿では,拡散復号化生成モデルを用いたMRIの自己教師付き復号化手法を提案する。
本フレームワークは,統計に基づくデノナイジング理論を拡散モデルに統合し,条件付き生成によるデノナイジングを行う。
論文 参考訳(メタデータ) (2023-02-06T18:56:39Z) - A Path Towards Clinical Adaptation of Accelerated MRI [0.0]
臨床関連性を高めるために,ニューラルネットワークMRI画像再構成器の強化について検討する。
MR信号データに可変加速度因子を付加したトレーニングコンストラクタは, 臨床患者検診における平均性能を最大で2%向上できることを示した。
論文 参考訳(メタデータ) (2022-08-26T18:34:41Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Interpretability Aware Model Training to Improve Robustness against
Out-of-Distribution Magnetic Resonance Images in Alzheimer's Disease
Classification [8.050897403457995]
異なるMRIハードウェアから派生した分布外サンプルに対するロバスト性を改善するために,解釈可能性を考慮した対向訓練システムを提案する。
本報告では, 分布外のサンプルに対して有望な性能を示す予備的な結果を示す。
論文 参考訳(メタデータ) (2021-11-15T04:42:47Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
経時的に脳血流量の変化を追跡でき, ピアル表面に向かって伝播する自発性動脈拡張を同定できる。
この新たなイメージング機能は、機能的磁気共鳴イメージング(fMRI)を基盤とした血行動態応答関数を特徴付けるための有望なステップである。
論文 参考訳(メタデータ) (2020-01-14T22:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。