Accelerating Privacy-Preserving Medical Record Linkage: A Three-Party MPC Approach
- URL: http://arxiv.org/abs/2410.21605v2
- Date: Tue, 12 Nov 2024 00:42:53 GMT
- Title: Accelerating Privacy-Preserving Medical Record Linkage: A Three-Party MPC Approach
- Authors: Şeyma Selcan Mağara, Noah Dietrich, Ali Burak Ünal, Mete Akgün,
- Abstract summary: This paper presents a novel and efficient PPRL based on a secure 3-party computation framework.
We demonstrate that our method preserves the linkage quality of the state-of-the-art PPRL method while achieving up to 14 times faster performance.
- Score: 1.7999333451993955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Record linkage is a crucial concept for integrating data from multiple sources, particularly when datasets lack exact identifiers, and it has diverse applications in real-world data analysis. Privacy-Preserving Record Linkage (PPRL) ensures this integration occurs securely, protecting sensitive information from unauthorized access. This is especially important in sectors such as healthcare, where datasets include private identity information (IDAT) governed by strict privacy laws. However, maintaining both privacy and efficiency in large-scale record linkage poses significant challenges. Consequently, researchers must develop advanced methods to protect data privacy while optimizing processing performance. This paper presents a novel and efficient PPRL method based on a secure 3-party computation (MPC) framework. Our approach allows multiple parties to compute linkage results without exposing their private inputs and significantly improves the speed of linkage process compared to existing privacy-preserving solutions. We demonstrated that our method preserves the linkage quality of the state-of-the-art PPRL method while achieving up to 14 times faster performance. For example, linking a record against a database of 10,000 records takes just 8.74 seconds in a realistic network with 700 Mbps bandwidth and 60 ms latency. Even on a slower internet connection with 100 Mbps bandwidth and 60 ms latency, the linkage completes in 28 seconds, highlighting the scalability and efficiency of our solution.
Related papers
- Improving Noise Efficiency in Privacy-preserving Dataset Distillation [59.57846442477106]
We introduce a novel framework that decouples sampling from optimization for better convergence and improves signal quality.<n>On CIFAR-10, our method achieves a textbf10.0% improvement with 50 images per class and textbf8.3% increase with just textbfone-fifth the distilled set size of previous state-of-the-art methods.
arXiv Detail & Related papers (2025-08-03T13:15:52Z) - Noise-Resilient Homomorphic Encryption: A Framework for Secure Data Processing in Health care Domain [0.0]
Homomorphic Integrity Model (HIM) is designed to enhance security, efficiency, and reliability in encrypted data processing.
De decryption mechanism ensures that the data recovered upon doing complex homomorphic computation will be valid and reliable.
arXiv Detail & Related papers (2024-12-16T06:26:40Z) - Multi-Layer Privacy-Preserving Record Linkage with Clerical Review based on gradual information disclosure [1.2453705483335629]
Privacy-Preserving Record linkage (PPRL) is an essential component in data integration tasks of sensitive information.
We present a novel privacy-preserving protocol that integrates clerical review in PPRL using a multi-layer active learning process.
The experimental evaluation on real-world datasets shows considerable linkage quality improvements with limited labeling effort and privacy risks.
arXiv Detail & Related papers (2024-12-05T14:18:50Z) - DP-CDA: An Algorithm for Enhanced Privacy Preservation in Dataset Synthesis Through Randomized Mixing [0.8739101659113155]
We introduce an effective data publishing algorithm emphDP-CDA.
Our proposed algorithm generates synthetic datasets by randomly mixing data in a class-specific manner, and inducing carefully-tuned randomness to ensure privacy guarantees.
Our results indicate that synthetic datasets produced using the DP-CDA can achieve superior utility compared to those generated by traditional data publishing algorithms, even when subject to the same privacy requirements.
arXiv Detail & Related papers (2024-11-25T06:14:06Z) - Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
Collaborative inference among multiple wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications.
transmitting extracted features poses a significant privacy risk, as sensitive personal data can be exposed during the process.
We propose a novel privacy-preserving collaborative inference mechanism, wherein each edge device in the network secures the privacy of extracted features before transmitting them to a central server for inference.
arXiv Detail & Related papers (2024-10-25T18:11:02Z) - Private Approximate Query over Horizontal Data Federation [0.0]
Existing approaches rely on cryptography, which improves privacy, but at the expense of query response time.
We propose a new approach that considers a data distribution-aware online sampling technique to accelerate the execution of range queries.
Our solution is able of providing up to 8 times faster processing than the basic non-secure solution.
arXiv Detail & Related papers (2024-06-17T11:19:58Z) - Provable Privacy with Non-Private Pre-Processing [56.770023668379615]
We propose a general framework to evaluate the additional privacy cost incurred by non-private data-dependent pre-processing algorithms.
Our framework establishes upper bounds on the overall privacy guarantees by utilising two new technical notions.
arXiv Detail & Related papers (2024-03-19T17:54:49Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
We propose TernaryVote, which combines a ternary compressor and the majority vote mechanism to realize differential privacy, gradient compression, and Byzantine resilience simultaneously.
We theoretically quantify the privacy guarantee through the lens of the emerging f-differential privacy (DP) and the Byzantine resilience of the proposed algorithm.
arXiv Detail & Related papers (2024-02-16T16:41:14Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Efficient Logistic Regression with Local Differential Privacy [0.0]
Internet of Things devices are expanding rapidly and generating huge amount of data.
There is an increasing need to explore data collected from these devices.
Collaborative learning provides a strategic solution for the Internet of Things settings but also raises public concern over data privacy.
arXiv Detail & Related papers (2022-02-05T22:44:03Z) - Linear Model with Local Differential Privacy [0.225596179391365]
Privacy preserving techniques have been widely studied to analyze distributed data across different agencies.
Secure multiparty computation has been widely studied for privacy protection with high privacy level but intense cost.
matrix masking technique is applied to encrypt data such that the secure schemes are against malicious adversaries.
arXiv Detail & Related papers (2022-02-05T01:18:00Z) - Privacy-Aware Time-Series Data Sharing with Deep Reinforcement Learning [33.42328078385098]
We study the privacy-utility trade-off (PUT) in time-series data sharing.
Methods that preserve the privacy for the current time may leak significant amount of information at the trace level.
We consider sharing the distorted version of a user's true data sequence with an untrusted third party.
arXiv Detail & Related papers (2020-03-04T18:47:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.