Noise-Resilient Homomorphic Encryption: A Framework for Secure Data Processing in Health care Domain
- URL: http://arxiv.org/abs/2412.11474v1
- Date: Mon, 16 Dec 2024 06:26:40 GMT
- Title: Noise-Resilient Homomorphic Encryption: A Framework for Secure Data Processing in Health care Domain
- Authors: B. Shuriya, S. Vimal Kumar, K. Bagyalakshmi,
- Abstract summary: Homomorphic Integrity Model (HIM) is designed to enhance security, efficiency, and reliability in encrypted data processing.
De decryption mechanism ensures that the data recovered upon doing complex homomorphic computation will be valid and reliable.
- Score: 0.0
- License:
- Abstract: In this paper, we introduce the Fully Homomorphic Integrity Model (HIM), a novel approach designed to enhance security, efficiency, and reliability in encrypted data processing, primarily within the health care industry. HIM addresses the key challenges that noise accumulation, computational overheads, and data integrity pose during homomorphic operations. Our contribution of HIM: advances in noise management through the rational number adjustment; key generation based on personalized prime numbers; and time complexity analysis details for key operations. In HIM, some additional mechanisms were introduced, including robust mechanisms of decryption. Indeed, the decryption mechanism ensures that the data recovered upon doing complex homomorphic computation will be valid and reliable. The healthcare id model is tested, and it supports real-time processing of data with privacy maintained concerning patients. It supports analytics and decision-making processes without any compromise on the integrity of information concerning patients. Output HIM promotes the efficiency of encryption to a greater extent as it reduces the encryption time up to 35ms and decryption time up to 140ms, which is better when compared to other models in the existence. Ciphertext size also becomes the smallest one, which is 4KB. Our experiments confirm that HIM is indeed a very efficient and secure privacy-preserving solution for healthcare applications
Related papers
- Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.
These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.
We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
arXiv Detail & Related papers (2025-01-25T04:53:36Z) - ViT Enhanced Privacy-Preserving Secure Medical Data Sharing and Classification [8.140412831443454]
This research introduces a secure framework consisting of a learnable encryption method based on the block-pixel operation to encrypt the data and subsequently integrate it with the Vision Transformer (ViT)
The proposed framework ensures data privacy and security by creating unique scrambling patterns per key, providing robust performance against leading bit attacks and minimum difference attacks.
arXiv Detail & Related papers (2024-11-08T16:33:20Z) - DataSeal: Ensuring the Verifiability of Private Computation on Encrypted Data [14.21750921409931]
We introduce DataSeal, which combines the low overhead of the algorithm-based fault tolerance (ABFT) technique with the confidentiality of Fully Homomorphic Encryption (FHE)
DataSeal achieves much lower overheads for providing computation verifiability for FHE than other techniques that include MAC, ZKP, and TEE.
arXiv Detail & Related papers (2024-10-19T21:19:39Z) - At Least Factor-of-Two Optimization for RWLE-Based Homomorphic Encryption [0.0]
Homomorphic encryption (HE) supports certain operations on encrypted data without the need for decryption.
HE schemes come with a non-trivial computational overhead that can hamper data-intensive workloads.
We present an encryption method we call Zinc" which forgoes the multiple caching process, replacing it with a single scalar addition.
arXiv Detail & Related papers (2024-08-14T05:42:35Z) - Speed-up of Data Analysis with Kernel Trick in Encrypted Domain [2.592307869002029]
Homomorphic encryption (HE) is pivotal for secure computation on encrypted data, crucial in privacy-preserving data analysis.
We present an effective acceleration method using the kernel method for HE schemes, enhancing time performance in ML/STAT algorithms within encrypted domains.
arXiv Detail & Related papers (2024-06-14T04:49:40Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z) - Cryptotree: fast and accurate predictions on encrypted structured data [0.0]
Homomorphic Encryption (HE) is acknowledged for its ability to allow computation on encrypted data, where both the input and output are encrypted.
We propose Cryptotree, a framework that enables the use of Random Forests (RF), a very powerful learning procedure compared to linear regression.
arXiv Detail & Related papers (2020-06-15T11:48:01Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.