論文の概要: MARCO: Multi-Agent Real-time Chat Orchestration
- arxiv url: http://arxiv.org/abs/2410.21784v1
- Date: Tue, 29 Oct 2024 06:42:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:43:00.122866
- Title: MARCO: Multi-Agent Real-time Chat Orchestration
- Title(参考訳): MARCO:マルチエージェントリアルタイムチャットオーケストレーション
- Authors: Anubhav Shrimal, Stanley Kanagaraj, Kriti Biswas, Swarnalatha Raghuraman, Anish Nediyanchath, Yi Zhang, Promod Yenigalla,
- Abstract要約: LLMを用いたタスク自動化のためのマルチエージェントリアルタイムチャットオーケストレーションフレームワークであるMARCOを提案する。
MARCOは複雑なマルチステップタスク実行にLLMを使用する上で重要な課題に対処する。
我々は、デジタルレストランサービスプラットフォームの会話におけるタスク実行における、94.48%と92.74%の精度で、MARCOの優れたパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 6.7741570640544415
- License:
- Abstract: Large language model advancements have enabled the development of multi-agent frameworks to tackle complex, real-world problems such as to automate tasks that require interactions with diverse tools, reasoning, and human collaboration. We present MARCO, a Multi-Agent Real-time Chat Orchestration framework for automating tasks using LLMs. MARCO addresses key challenges in utilizing LLMs for complex, multi-step task execution. It incorporates robust guardrails to steer LLM behavior, validate outputs, and recover from errors that stem from inconsistent output formatting, function and parameter hallucination, and lack of domain knowledge. Through extensive experiments we demonstrate MARCO's superior performance with 94.48% and 92.74% accuracy on task execution for Digital Restaurant Service Platform conversations and Retail conversations datasets respectively along with 44.91% improved latency and 33.71% cost reduction. We also report effects of guardrails in performance gain along with comparisons of various LLM models, both open-source and proprietary. The modular and generic design of MARCO allows it to be adapted for automating tasks across domains and to execute complex usecases through multi-turn interactions.
- Abstract(参考訳): 大規模言語モデルの進歩により、多言語フレームワークの開発は、多様なツールや推論、人間とのコラボレーションを必要とするタスクを自動化するといった、複雑で現実的な問題に対処することが可能になった。
LLMを用いたタスク自動化のためのマルチエージェントリアルタイムチャットオーケストレーションフレームワークであるMARCOを提案する。
MARCOは複雑なマルチステップタスク実行にLLMを使用する上で重要な課題に対処する。
堅牢なガードレールを組み込んで、LCMの動作を制御し、出力を検証し、一貫性のない出力フォーマット、関数とパラメータの幻覚、ドメイン知識の欠如に起因するエラーから回復する。
MARCOの優れたパフォーマンスを94.48%と92.74%の精度で実証し、それぞれDigital Restaurant Service Platformの会話とRetailの会話データセット、44.91%の改善されたレイテンシと33.71%のコスト削減を示した。
また、オープンソースとプロプライエタリの両方において、各種LLMモデルとの比較とともに、ガードレールが性能向上に与える影響を報告する。
MARCOのモジュール的で汎用的な設計により、ドメイン間でのタスクの自動化や、マルチターンインタラクションによる複雑なユースケースの実行に適応することができる。
関連論文リスト
- AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - MMRel: A Relation Understanding Dataset and Benchmark in the MLLM Era [72.95901753186227]
MMRel(Multi-Modal Relation Understanding)は、Multi-Modal Large Language Models (MLLM)とのオブジェクト間関係を研究するための包括的データセットである。
MMRelには3つの特徴がある: (i) 大規模かつ高い多様性を保証する3つの異なるドメインから得られる15K以上の質問応答ペア; (ii) MLLMが幻覚によってしばしば失敗する非常に珍しい関係を持つサブセットを含む; (iii) オブジェクト間関係のために手作業で検証された高品質なラベルを提供する。
論文 参考訳(メタデータ) (2024-06-13T13:51:59Z) - Adaptive In-conversation Team Building for Language Model Agents [33.03550687362213]
複数の大規模言語モデル(LLM)エージェントを活用することは、複雑なタスクに取り組む上で有望なアプローチであることが示されている。
私たちの新しい適応型チーム構築パラダイムは、Captain Agentという新しいエージェント設計を通じて実現された柔軟なソリューションを提供します。
6つの実世界のシナリオに対する包括的な評価は、Captain Agentが既存のマルチエージェントメソッドを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-05-29T18:08:37Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning [14.635361844362794]
Smurfs'は、大規模言語モデルの応用に革命をもたらすために設計された最先端のマルチエージェントフレームワークである。
Smurfは、余分なコストなしで複雑なタスクを解くモデルの能力を高めることができる。
論文 参考訳(メタデータ) (2024-05-09T17:49:04Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
文,意味,多言語レベルでユーザ命令を攻撃することにより,逆ユーザ命令を構築する。
我々は、ロバストネス設定を組み込んだベンチマークを用いて、3つのクローズドソースと4つのオープンソースLCMをテストする。
GPT-4は我々のベンチマークで最も高い性能と強靭性を示す。
論文 参考訳(メタデータ) (2024-03-06T15:33:32Z) - LLMBind: A Unified Modality-Task Integration Framework [38.95771765322677]
多様なマルチモーダルタスクを統一する新しいフレームワークである textbfLLMBind を導入する。
LLMBindはMixture-of-Experts (MoE) Large Language Model (LLM)を利用してマルチモーダル入力を処理し、タスク固有のトークンを生成する。
論文 参考訳(メタデータ) (2024-02-22T12:36:31Z) - TaskLAMA: Probing the Complex Task Understanding of Language Models [13.336015994186955]
構造化複雑タスク分解(Structured Complex Task Decomposition, SCTD)は、複雑な現実世界のタスクを、タスク達成に寄与する個々のステップ上の有向非巡回グラフに分解する問題である。
我々は,Large Language Models (LLMs) から抽出した知識を用いて,SCTDの精度を検証した。
実験の結果,LLMは複雑なタスクを個々のステップに効果的に分解できることがわかった。
論文 参考訳(メタデータ) (2023-08-29T13:36:45Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。