論文の概要: Micro-Structures Graph-Based Point Cloud Registration for Balancing Efficiency and Accuracy
- arxiv url: http://arxiv.org/abs/2410.21857v1
- Date: Tue, 29 Oct 2024 08:36:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:40:29.325738
- Title: Micro-Structures Graph-Based Point Cloud Registration for Balancing Efficiency and Accuracy
- Title(参考訳): マイクロストラクチャによるグラフベースのポイントクラウドレジストレーションによる効率性と精度のバランス
- Authors: Rongling Zhang, Li Yan, Pengcheng Wei, Hong Xie, Pinzhuo Wang, Binbing Wang,
- Abstract要約: マイクロ構造グラフに基づくグローバルポイントクラウド登録手法を提案する。
提案手法は3DMatch と ETH のデータセットでよく機能する。
- 参考スコア(独自算出の注目度): 5.70403503863614
- License:
- Abstract: Point Cloud Registration (PCR) is a fundamental and significant issue in photogrammetry and remote sensing, aiming to seek the optimal rigid transformation between sets of points. Achieving efficient and precise PCR poses a considerable challenge. We propose a novel micro-structures graph-based global point cloud registration method. The overall method is comprised of two stages. 1) Coarse registration (CR): We develop a graph incorporating micro-structures, employing an efficient graph-based hierarchical strategy to remove outliers for obtaining the maximal consensus set. We propose a robust GNC-Welsch estimator for optimization derived from a robust estimator to the outlier process in the Lie algebra space, achieving fast and robust alignment. 2) Fine registration (FR): To refine local alignment further, we use the octree approach to adaptive search plane features in the micro-structures. By minimizing the distance from the point-to-plane, we can obtain a more precise local alignment, and the process will also be addressed effectively by being treated as a planar adjustment algorithm combined with Anderson accelerated optimization (PA-AA). After extensive experiments on real data, our proposed method performs well on the 3DMatch and ETH datasets compared to the most advanced methods, achieving higher accuracy metrics and reducing the time cost by at least one-third.
- Abstract(参考訳): ポイントクラウド登録(PCR)は、点集合間の最適な厳密な変換を求めることを目的として、光グラム測定とリモートセンシングにおいて基本的な重要な問題である。
効率よく正確なPCRを得るのは非常に難しい。
マイクロ構造グラフに基づくグローバルポイントクラウド登録手法を提案する。
全体的な方法は2つの段階から構成される。
1) 粗い登録 (CR): グラフ構造を組み込んだグラフを開発し, グラフに基づく効率的な階層戦略を用いて, 最大コンセンサスセットを得るためのアウトリアを除去する。
本稿では, リー代数空間の退化過程にロバストな推定器から導かれる最適化のためのロバストなGNC-ヴェルシュ推定器を提案し, 高速かつロバストなアライメントを実現する。
2) 微細登録 (FR): 局所的なアライメントをさらに改善するために, マイクロ構造における適応的な探索平面特徴にオクツリーアプローチを用いる。
平面間距離を最小化することにより、より正確な局所アライメントが得られ、アンダーソン加速最適化(PA-AA)と組み合わせた平面調整アルゴリズムとして効果的に処理される。
実データに対する大規模な実験の後,提案手法は最も高度な手法と比較して3DMatchとETHのデータセットで良好に動作し,高い精度のメトリクスを達成し,時間コストを少なくとも3分の1削減する。
関連論文リスト
- POPoS: Improving Efficient and Robust Facial Landmark Detection with Parallel Optimal Position Search [34.50794776762681]
本稿では,高精度符号化・復号化フレームワークであるParallel Optimal Position Search (POPoS)を紹介する。
Pseudo-range multilateration は、ヒートマップエラーを補正し、ランドマークのローカライゼーションの精度を高めるために使用される。
1ステップ並列アルゴリズムを導入し、計算効率を大幅に向上し、処理時間を短縮する。
論文 参考訳(メタデータ) (2024-10-12T16:28:40Z) - SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
本研究では,SPAREを提案する。SPAREは,非剛性登録のための対称化点-平面間距離を用いた新しい定式化である。
提案手法は, 厳密でない登録問題の精度を大幅に向上し, 比較的高い解効率を維持する。
論文 参考訳(メタデータ) (2024-05-30T15:55:04Z) - Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
マルチウェイポイントクラウドモザイクのための新しいフレームワーク(水曜日)を紹介する。
我々のアプローチの核心は、重複を識別し、注意点を洗練する学習されたペアワイズ登録アルゴリズムODINである。
4つの多種多様な大規模データセットを用いて、我々の手法は、全てのベンチマークにおいて大きなマージンで、最先端のペアとローテーションの登録結果を比較した。
論文 参考訳(メタデータ) (2024-03-30T17:29:13Z) - DIPR: Efficient Point Cloud Registration via Dynamic Iteration [4.491867613612359]
我々は、ダイナミックイットフレームワークであるDIPRを通じて、スペーサー入力ポイントに基づくオーバーラップポイントに対話的にフォーカスする、新しい効率的なポイントクラウド登録を導入する。
提案手法は,最先端手法と比較して計算時間とGPUメモリ消費を大幅に削減しつつ,優れた登録精度を実現する。
論文 参考訳(メタデータ) (2023-12-05T16:47:46Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
我々はマンハッタンのフレームを推定する問題に取り組む。
2つの新しい2行解法が導出され、そのうちの1つは既存の解法に影響を与える特異点に悩まされない。
また、局所最適化の性能を高めるために、任意の行で実行される新しい最小でないメソッドを設計する。
論文 参考訳(メタデータ) (2023-08-21T13:03:25Z) - GraphReg: Dynamical Point Cloud Registration with Geometry-aware Graph
Signal Processing [0.0]
本研究では,3次元点雲登録のための高精度,効率的,物理的に誘導された手法を提案する。
我々は、粒子(点)の動きを制御し、より正確で頑健な登録を実現するために、幾何学を意識した剛体力学を探求する。
その結果,提案手法は精度において最先端の手法よりも優れており,大規模点雲の登録に適していることがわかった。
論文 参考訳(メタデータ) (2023-02-02T14:06:46Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
ROC曲線 (AUC) の下の領域は、機械学習において最も広く使われている分類モデルのパフォーマンス指標の1つである。
近年の封筒平滑化技術に基づく効率的な近似勾配降下法を開発した。
提案アルゴリズムは,効率のよい解法を欠くランク付けされた範囲損失の和を最小化するためにも利用できる。
論文 参考訳(メタデータ) (2022-03-03T03:46:18Z) - Fast and Robust Iterative Closest Point [32.42799285301607]
イテレーティブ・クローズト・ポイント(ICP)は、2つの点集合間の剛性登録のための基本技術である。
Sparse ICPのような最近の研究は、計算速度を犠牲にしてスパース性最適化によって堅牢性を達成する。
本稿では,古典的な点対点ICPを最大化最小化(MM)アルゴリズムとして扱えることを示す。
論文 参考訳(メタデータ) (2020-07-15T11:32:53Z) - RPM-Net: Robust Point Matching using Learned Features [79.52112840465558]
RPM-Netは、より敏感で、より堅牢なディープラーニングベースのアプローチである。
既存の方法とは異なり、我々のRPM-Netは、部分的な可視性を備えた対応や点雲の欠如を処理します。
論文 参考訳(メタデータ) (2020-03-30T13:45:27Z) - Learning to Optimize Non-Rigid Tracking [54.94145312763044]
我々は、堅牢性を改善し、解法収束を高速化するために学習可能な最適化を採用する。
まず、CNNを通じてエンドツーエンドに学習された深い特徴にアライメントデータ項を統合することにより、追跡対象をアップグレードする。
次に,プレコンディショニング手法と学習手法のギャップを,プレコンディショナを生成するためにトレーニングされたConditionNetを導入することで埋める。
論文 参考訳(メタデータ) (2020-03-27T04:40:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。