論文の概要: Joint Estimation of Conditional Mean and Covariance for Unbalanced Panels
- arxiv url: http://arxiv.org/abs/2410.21858v2
- Date: Wed, 30 Oct 2024 17:21:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:24:12.698669
- Title: Joint Estimation of Conditional Mean and Covariance for Unbalanced Panels
- Title(参考訳): 不均衡パネルの条件平均と共分散の連成推定
- Authors: Damir Filipovic, Paul Schneider,
- Abstract要約: 本研究では,大きな不均衡パネルに対する断面条件平均と共分散行列の非パラメトリックカーネルベース推定器を提案する。
一貫性を示し、有限サンプル保証を提供します。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We propose a novel nonparametric kernel-based estimator of cross-sectional conditional mean and covariance matrices for large unbalanced panels. We show its consistency and provide finite-sample guarantees. In an empirical application, we estimate conditional mean and covariance matrices for a large unbalanced panel of monthly stock excess returns given macroeconomic and firm-specific covariates from 1962 to 2021.The estimator performs well with respect to statistical measures. It is informative for empirical asset pricing, generating conditional mean-variance efficient portfolios with substantial out-of-sample Sharpe ratios far beyond equal-weighted benchmarks.
- Abstract(参考訳): 本研究では,大きな不均衡パネルに対する断面条件平均と共分散行列の非パラメトリックカーネルベース推定器を提案する。
一貫性を示し、有限サンプル保証を提供します。
経験的応用として,1962年から2021年までのマクロ経済・企業特化共変量による月次過剰リターンの非均衡パネルの条件平均と共分散行列を推定する。
経験的資産価格では有益であり、条件付き平均分散効率の良いポートフォリオを生成し、サンプル外シャープ比は等重量ベンチマークをはるかに超えている。
関連論文リスト
- Benign Overfitting in Out-of-Distribution Generalization of Linear Models [19.203753135860016]
我々は、アウト・オブ・ディストリビューション(OOD)体制における良心過剰の理解に向けて、最初の一歩を踏み出した。
我々は、標準的な隆起回帰において良性過剰適合が生じることを証明する非漸近保証を提供する。
また、より一般的な目標共分散行列の族についても理論的結果を示す。
論文 参考訳(メタデータ) (2024-12-19T02:47:39Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Portfolio Optimization with Robust Covariance and Conditional Value-at-Risk Constraints [0.0]
各種のLedoit Shrinkage CovarianceおよびRobust Gerber CovarianceMatrixを用いた大容量ポートフォリオの性能評価を行った。
堅牢性評価は、特に強気相場で、市場資本化の重み付けされたベンチマークポートフォリオを上回る可能性がある。
我々は最適化アルゴリズムに教師なしクラスタリングアルゴリズムK平均を組み込んだ。
論文 参考訳(メタデータ) (2024-06-02T03:50:20Z) - A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
制約的な仮定を課さずに共分散推定器を構築するための原理的手法を提案する。
頑健な推定器は効率的に計算可能で一貫したものであることを示す。
合成および実データに基づく数値実験により、我々の頑健な推定器は最先端の推定器と競合していることが示された。
論文 参考訳(メタデータ) (2024-05-30T15:01:18Z) - Fair and Robust Estimation of Heterogeneous Treatment Effects for Policy
Learning [2.356908851188234]
我々は、この枠組みを用いて、最適政策によって達成可能な公平性と最大福祉との間のトレードオフを特徴づける。
本研究は,シミュレーション研究における手法の評価と実世界のケーススタディにおける手法の解説である。
論文 参考訳(メタデータ) (2023-06-06T12:22:20Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
コンフォーマル予測は、機械学習において厳密な不確実性定量化を提供するための一般的なパラダイムとして現れつつある。
本稿では,共形予測を連邦学習環境に拡張する。
本稿では、FL設定に適した部分交換可能性の弱い概念を提案し、それをフェデレート・コンフォーマル予測フレームワークの開発に利用する。
論文 参考訳(メタデータ) (2023-05-27T19:57:27Z) - Measuring Model Fairness under Noisy Covariates: A Theoretical
Perspective [26.704446184314506]
本研究では,雑音情報に基づく機械学習モデルの公平性の測定問題について検討する。
本稿では, 精度の高い公平性評価が可能な弱い条件を特徴付けることを目的とした理論的解析を行う。
論文 参考訳(メタデータ) (2021-05-20T18:36:28Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - Relative Deviation Margin Bounds [55.22251993239944]
我々はRademacher複雑性の観点から、分布依存と一般家庭に有効な2種類の学習境界を与える。
有限モーメントの仮定の下で、非有界な損失関数に対する分布依存的一般化境界を導出する。
論文 参考訳(メタデータ) (2020-06-26T12:37:17Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
経験値関数の新しい正規化器を導入し、ワッサーシュタイン分布のロバストな値関数を下限とすることを示す。
強化学習における$textitexternalな不確実性に対処するための実用的なツールとして正規化を使用することを提案する。
論文 参考訳(メタデータ) (2020-03-05T19:56:23Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
重要なアプリケーションでは,効果的な推定が依然として可能であることを示す。
我々のアプローチは、定常分布と経験分布の差を補正する比率を推定することに基づいている。
結果として得られるアルゴリズム、GenDICEは単純で効果的である。
論文 参考訳(メタデータ) (2020-02-21T00:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。