Distinguishing Ignorance from Error in LLM Hallucinations
- URL: http://arxiv.org/abs/2410.22071v2
- Date: Tue, 18 Feb 2025 15:52:52 GMT
- Title: Distinguishing Ignorance from Error in LLM Hallucinations
- Authors: Adi Simhi, Jonathan Herzig, Idan Szpektor, Yonatan Belinkov,
- Abstract summary: We distinguish between two types of hallucinations: ones where the model does not hold the correct answer in its parameters, which we term HK-, and ones where the model answers incorrectly despite having the required knowledge, termed HK+.
We show that different models hallucinate on different examples, which motivates constructing model-specific hallucination datasets for training detectors.
- Score: 43.62904897907926
- License:
- Abstract: Large language models (LLMs) are susceptible to hallucinations -- factually incorrect outputs -- leading to a large body of work on detecting and mitigating such cases. We argue that it is important to distinguish between two types of hallucinations: ones where the model does not hold the correct answer in its parameters, which we term HK-, and ones where the model answers incorrectly despite having the required knowledge, termed HK+. We first find that HK+ hallucinations are prevalent and occur across models and datasets. Then, we demonstrate that distinguishing between these two cases is beneficial for mitigating hallucinations. Importantly, we show that different models hallucinate on different examples, which motivates constructing model-specific hallucination datasets for training detectors. Overall, our findings draw attention to classifying types of hallucinations and provide means to handle them more effectively. The code is available at https://github.com/technion-cs-nlp/hallucination-mitigation .
Related papers
- Trust Me, I'm Wrong: High-Certainty Hallucinations in LLMs [45.13670875211498]
Large Language Models (LLMs) often generate outputs that lack grounding in real-world facts, a phenomenon known as hallucinations.
We show that models can hallucinate with high certainty even when they have the correct knowledge.
arXiv Detail & Related papers (2025-02-18T15:46:31Z) - Investigating and Mitigating Object Hallucinations in Pretrained Vision-Language (CLIP) Models [22.42712853647949]
We present an in-depth investigation into the object hallucination problem specifically within the CLIP model.
We unveil that even in isolation, the CLIP model is prone to object hallucinations, suggesting that the hallucination problem is not solely due to the interaction between vision and language modalities.
We show the the enhanced model can be employed as a visual encoder, effectively alleviating the object hallucination issue in LVLMs.
arXiv Detail & Related papers (2024-10-04T06:24:49Z) - Training Language Models on the Knowledge Graph: Insights on Hallucinations and Their Detectability [83.0884072598828]
Hallucinations come in many forms, and there is no universally accepted definition.
We focus on studying only those hallucinations where a correct answer appears verbatim in the training set.
We find that for a fixed dataset, larger and longer-trained LMs hallucinate less.
While we see detector size improves performance on fixed LM's outputs, we find an inverse relationship between the scale of the LM and the detectability of its hallucinations.
arXiv Detail & Related papers (2024-08-14T23:34:28Z) - Knowledge Overshadowing Causes Amalgamated Hallucination in Large Language Models [65.32990889402927]
We coin this phenomenon as knowledge overshadowing''
We show that the hallucination rate grows with both the imbalance ratio and the length of dominant condition description.
We propose to utilize overshadowing conditions as a signal to catch hallucination before it is produced.
arXiv Detail & Related papers (2024-07-10T20:37:42Z) - VideoHallucer: Evaluating Intrinsic and Extrinsic Hallucinations in Large Video-Language Models [59.05674402770661]
This work introduces VideoHallucer, the first comprehensive benchmark for hallucination detection in large video-language models (LVLMs)
VideoHallucer categorizes hallucinations into two main types: intrinsic and extrinsic, offering further subcategories for detailed analysis.
arXiv Detail & Related papers (2024-06-24T06:21:59Z) - On Large Language Models' Hallucination with Regard to Known Facts [74.96789694959894]
Large language models are successful in answering factoid questions but are also prone to hallucination.
We investigate the phenomenon of LLMs possessing correct answer knowledge yet still hallucinating from the perspective of inference dynamics.
Our study shed light on understanding the reasons for LLMs' hallucinations on their known facts, and more importantly, on accurately predicting when they are hallucinating.
arXiv Detail & Related papers (2024-03-29T06:48:30Z) - On Early Detection of Hallucinations in Factual Question Answering [4.76359068115052]
hallucinations remain a major impediment towards gaining user trust.
In this work, we explore if the artifacts associated with the model generations can provide hints that the generation will contain hallucinations.
Our results show that the distributions of these artifacts tend to differ between hallucinated and non-hallucinated generations.
arXiv Detail & Related papers (2023-12-19T14:35:04Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
hallucinations inherent in machine-generated data remain under-explored.
We present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm.
Our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.
arXiv Detail & Related papers (2023-11-22T04:52:58Z) - On the Origin of Hallucinations in Conversational Models: Is it the
Datasets or the Models? [32.41234580068662]
We conduct a study on existing knowledge-grounded conversational benchmarks and several state-of-the-art models.
Standard benchmarks consist of >60% hallucinated responses, leading to models that not only hallucinate but even amplify hallucinations.
Our findings raise important questions on the quality of existing datasets and models trained using them.
arXiv Detail & Related papers (2022-04-17T05:15:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.