GoRINNs: Godunov-Riemann Informed Neural Networks for Learning Hyperbolic Conservation Laws
- URL: http://arxiv.org/abs/2410.22193v2
- Date: Thu, 31 Oct 2024 13:37:43 GMT
- Title: GoRINNs: Godunov-Riemann Informed Neural Networks for Learning Hyperbolic Conservation Laws
- Authors: Dimitrios G. Patsatzis, Mario di Bernardo, Lucia Russo, Constantinos Siettos,
- Abstract summary: We present GoRINNs: numerical analysis-informed neural networks for the solution of inverse problems of non-linear systems of conservation laws.
GoRINNs are based on high-resolution Godunov schemes for the solution of the Riemann problem in hyperbolic Partial Differential Equations.
We demonstrate that GoRINNs provide a very high accuracy both in the smooth and discontinuous regions.
- Score: 0.6874745415692135
- License:
- Abstract: We present GoRINNs: numerical analysis-informed neural networks for the solution of inverse problems of non-linear systems of conservation laws. GoRINNs are based on high-resolution Godunov schemes for the solution of the Riemann problem in hyperbolic Partial Differential Equations (PDEs). In contrast to other existing machine learning methods that learn the numerical fluxes of conservative Finite Volume methods, GoRINNs learn the physical flux function per se. Due to their structure, GoRINNs provide interpretable, conservative schemes, that learn the solution operator on the basis of approximate Riemann solvers that satisfy the Rankine-Hugoniot condition. The performance of GoRINNs is assessed via four benchmark problems, namely the Burgers', the Shallow Water, the Lighthill-Whitham-Richards and the Payne-Whitham traffic flow models. The solution profiles of these PDEs exhibit shock waves, rarefactions and/or contact discontinuities at finite times. We demonstrate that GoRINNs provide a very high accuracy both in the smooth and discontinuous regions.
Related papers
- Discovery of Quasi-Integrable Equations from traveling-wave data using the Physics-Informed Neural Networks [0.0]
PINNs are used to study vortex solutions in 2+1 dimensional nonlinear partial differential equations.
We consider PINNs with conservation laws (referred to as cPINNs), deformations of the initial profiles, and a friction approach to improve the identification's resolution.
arXiv Detail & Related papers (2024-10-23T08:29:13Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Operator Learning Enhanced Physics-informed Neural Networks for Solving
Partial Differential Equations Characterized by Sharp Solutions [10.999971808508437]
We propose a novel framework termed Operator Learning Enhanced Physics-informed Neural Networks (OL-PINN)
The proposed method requires only a small number of residual points to achieve a strong generalization capability.
It substantially enhances accuracy, while also ensuring a robust training process.
arXiv Detail & Related papers (2023-10-30T14:47:55Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Koopman neural operator as a mesh-free solver of non-linear partial differential equations [15.410070455154138]
We propose the Koopman neural operator (KNO), a new neural operator, to overcome these challenges.
By approximating the Koopman operator, an infinite-dimensional operator governing all possible observations of the dynamic system, we can equivalently learn the solution of a non-linear PDE family.
The KNO exhibits notable advantages compared with previous state-of-the-art models.
arXiv Detail & Related papers (2023-01-24T14:10:15Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - wPINNs: Weak Physics informed neural networks for approximating entropy
solutions of hyperbolic conservation laws [6.445605125467574]
Physics informed neural networks (PINNs) require regularity of solutions of the underlying PDE to guarantee accurate approximation.
We propose a novel variant of PINNs, termed as weak PINNs (wPINNs) for accurate approximation of entropy solutions of scalar conservation laws.
arXiv Detail & Related papers (2022-07-18T10:07:13Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
In many application domains across science and engineering, we are interested in solving inverse problems with constraints defined by a partial differential equation (PDE)
Here we explore GNNs to solve such PDE-constrained inverse problems.
We demonstrate computational speedups of up to 90x using GNNs compared to principled solvers.
arXiv Detail & Related papers (2022-06-01T18:48:01Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - A Physics Informed Neural Network Approach to Solution and
Identification of Biharmonic Equations of Elasticity [0.0]
We explore an application of the Physics Informed Neural Networks (PINNs) in conjunction with Airy stress functions and Fourier series.
We find that enriching feature space using Airy stress functions can significantly improve the accuracy of PINN solutions for biharmonic PDEs.
arXiv Detail & Related papers (2021-08-16T17:19:50Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.