論文の概要: A Methodology for Gradual Semantics for Structured Argumentation under Incomplete Information
- arxiv url: http://arxiv.org/abs/2410.22209v1
- Date: Tue, 29 Oct 2024 16:38:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:40:49.040901
- Title: A Methodology for Gradual Semantics for Structured Argumentation under Incomplete Information
- Title(参考訳): 不完全情報に基づく構造的調音のための経時的意味論の一手法
- Authors: Antonio Rago, Stylianos Loukas Vasileiou, Francesca Toni, Tran Cao Son, William Yeoh,
- Abstract要約: 構造化議論フレームワークの段階的意味論を得るための新しい手法を提案する。
我々の方法論は議論の前提に関する不完全な情報に対応している。
方法論の2つの異なるインスタンス化を導入することで、このアプローチの可能性を実証する。
- 参考スコア(独自算出の注目度): 15.717458041314194
- License:
- Abstract: Gradual semantics have demonstrated great potential in argumentation, in particular for deploying quantitative bipolar argumentation frameworks (QBAFs) in a number of real-world settings, from judgmental forecasting to explainable AI. In this paper, we provide a novel methodology for obtaining gradual semantics for structured argumentation frameworks, where the building blocks of arguments and relations between them are known, unlike in QBAFs, where arguments are abstract entities. Differently from existing approaches, our methodology accommodates incomplete information about arguments' premises. We demonstrate the potential of our approach by introducing two different instantiations of the methodology, leveraging existing gradual semantics for QBAFs in these more complex frameworks. We also define a set of novel properties for gradual semantics in structured argumentation, discuss their suitability over a set of existing properties. Finally, we provide a comprehensive theoretical analysis assessing the instantiations, demonstrating the their advantages over existing gradual semantics for QBAFs and structured argumentation.
- Abstract(参考訳): グラデーショナルセマンティクスは、特に定量的双極子議論フレームワーク(QBAF)を、判断予測から説明可能なAIまで、現実世界の多くの設定に展開する上で、議論において大きな可能性を示している。
本稿では,議論が抽象的存在であるQBAFと異なり,議論の構成要素やそれらの関係が知られている構造化議論フレームワークの段階的意味論を得るための新しい手法を提案する。
既存の手法とは違って,提案手法は議論の前提に関する不完全な情報に対応している。
我々は,これらの複雑なフレームワークにおいて,既存のQBAFの段階的セマンティクスを活用することによって,方法論の2つの異なるインスタンス化を導入することにより,アプローチの可能性を示す。
また、構造化議論における漸進的意味論のための新しい性質のセットを定義し、既存の性質の集合に対するそれらの適合性について議論する。
最後に,既存のQBAFの段階的意味論と構造化された議論に対する優位性を示す。
関連論文リスト
- How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
Inductive Logic Programmingアプローチを用いて、抽象的および構造化された議論フレームワークのアクセシビリティセマンティクスを解釈可能な方法で学習する新しいフレームワークを提案する。
提案手法は既存の議論解法よりも優れており,フォーマルな議論や人間と機械の対話の領域において,新たな研究の方向性が開けることになる。
論文 参考訳(メタデータ) (2023-10-18T20:18:05Z) - Ranking-based Argumentation Semantics Applied to Logical Argumentation
(full version) [2.9005223064604078]
構造化議論におけるランキングベースセマンティクスの振る舞いについて検討する。
ランキングに基づく多種多様なセマンティクスが,いわゆる計算可能性尺度を生み出していることを示す。
論文 参考訳(メタデータ) (2023-07-31T15:44:33Z) - Many-valued Argumentation, Conditionals and a Probabilistic Semantics
for Gradual Argumentation [3.9571744700171743]
本稿では,段階的議論の意味論の多値優先的解釈を定義するための一般的な手法を提案する。
概念の証明として、有限値の場合、条件付き推論に対してAnswer set Programmingアプローチが提案される。
また,多値条件セマンティクスに基づく漸進的議論の確率論的セマンティクスを開発し,論じる。
論文 参考訳(メタデータ) (2022-12-14T22:10:46Z) - Towards Preserving Semantic Structure in Argumentative Multi-Agent via
Abstract Interpretation [0.0]
モデルチェックの観点から抽象概念を考察する。
いくつかの議論は、様々な観点から同じ位置を守り、議論フレームワークのサイズを減らそうとしている。
論文 参考訳(メタデータ) (2022-11-28T21:32:52Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
本稿では, PLM を用いた自己回帰的手法を用いて, モデル構造を行動列として記述する。
我々のアプローチは、私たちが見てきた全ての構造化予測タスクにおいて、新しい最先端を実現する。
論文 参考訳(メタデータ) (2022-10-26T13:27:26Z) - Admissibility in Strength-based Argumentation: Complexity and Algorithms
(Extended Version with Proofs) [1.5828697880068698]
我々は、適応性に基づく意味論の強度に基づく論証フレームワーク(StrAF)への適応について研究する。
特に文献で定義された強い許容性は望ましい性質、すなわちDungの基本的な補題を満たさないことを示す。
計算(強弱)拡張に対する擬ブール制約の翻訳を提案する。
論文 参考訳(メタデータ) (2022-07-05T18:42:04Z) - A Formalisation of Abstract Argumentation in Higher-Order Logic [77.34726150561087]
本稿では,古典的高階論理へのエンコーディングに基づく抽象的議論フレームワークの表現手法を提案する。
対話型および自動推論ツールを用いた抽象的議論フレームワークのコンピュータ支援評価のための一様フレームワークを提供する。
論文 参考訳(メタデータ) (2021-10-18T10:45:59Z) - Exploring Discourse Structures for Argument Impact Classification [48.909640432326654]
本稿では、文脈経路に沿った2つの議論間の談話関係が、議論の説得力を特定する上で不可欠な要素であることを実証的に示す。
本研究では,文レベルの構造情報を大規模言語モデルから派生した文脈的特徴に注入・融合するDisCOCを提案する。
論文 参考訳(メタデータ) (2021-06-02T06:49:19Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。