論文の概要: Emotion-Guided Image to Music Generation
- arxiv url: http://arxiv.org/abs/2410.22299v1
- Date: Tue, 29 Oct 2024 17:47:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:41:17.083564
- Title: Emotion-Guided Image to Music Generation
- Title(参考訳): 音楽生成のための感情誘導画像
- Authors: Souraja Kundu, Saket Singh, Yuji Iwahori,
- Abstract要約: 本稿では,感情誘導型画像から音楽への生成フレームワークを提案する。
特定のイメージの感情的なトーンに合わせて音楽を生成する。
このモデルはCNN-Transformerアーキテクチャを採用しており、訓練済みのCNN画像特徴抽出器と3つのTransformerエンコーダを備えている。
- 参考スコア(独自算出の注目度): 0.5461938536945723
- License:
- Abstract: Generating music from images can enhance various applications, including background music for photo slideshows, social media experiences, and video creation. This paper presents an emotion-guided image-to-music generation framework that leverages the Valence-Arousal (VA) emotional space to produce music that aligns with the emotional tone of a given image. Unlike previous models that rely on contrastive learning for emotional consistency, the proposed approach directly integrates a VA loss function to enable accurate emotional alignment. The model employs a CNN-Transformer architecture, featuring pre-trained CNN image feature extractors and three Transformer encoders to capture complex, high-level emotional features from MIDI music. Three Transformer decoders refine these features to generate musically and emotionally consistent MIDI sequences. Experimental results on a newly curated emotionally paired image-MIDI dataset demonstrate the proposed model's superior performance across metrics such as Polyphony Rate, Pitch Entropy, Groove Consistency, and loss convergence.
- Abstract(参考訳): 画像から音楽を生成することで、背景音楽、写真スライドショー、ソーシャルメディア体験、ビデオ作成など、さまざまな応用が強化される。
本稿では,Valence-Arousal (VA) の感情空間を利用した感情誘導画像合成フレームワークを提案する。
感情的整合性に対する対照的な学習に依存する従来のモデルとは異なり、提案手法はVA損失関数を直接統合し、正確な感情的アライメントを可能にする。
このモデルはCNN-Transformerアーキテクチャを採用しており、事前訓練されたCNN画像の特徴抽出器と3つのトランスフォーマーエンコーダを備えており、MIDI音楽からの複雑な高レベルの感情的特徴を捉えている。
3つのトランスフォーマーデコーダがこれらの機能を洗練し、音楽的にも感情的にも一貫したMIDIシーケンスを生成する。
新たにキュレートされた感情的ペア画像-MIDIデータセットの実験結果は、ポリフォニーレート、ピッチエントロピー、グローブ一貫性、損失収束といった指標にまたがるモデルの優れた性能を示す。
関連論文リスト
- Audio-Driven Emotional 3D Talking-Head Generation [47.6666060652434]
本稿では,高精度な感情表現による高忠実・音声駆動型映像像の合成システムを提案する。
本研究では,無声音声入力に応答して自然なアイドル状態(非話者)ビデオを生成するポーズサンプリング手法を提案する。
論文 参考訳(メタデータ) (2024-10-07T08:23:05Z) - Bridging Paintings and Music -- Exploring Emotion based Music Generation through Paintings [10.302353984541497]
本研究では,視覚芸術で表現される感情に共鳴する音楽を生成するモデルを開発した。
コーディネートアートと音楽データの不足に対処するため、私たちはEmotion Painting Musicデータセットをキュレートした。
我々の2段階のフレームワークは、イメージを感情的内容のテキスト記述に変換し、これらの記述を音楽に変換することで、最小限のデータによる効率的な学習を容易にする。
論文 参考訳(メタデータ) (2024-09-12T08:19:25Z) - Emotion Manipulation Through Music -- A Deep Learning Interactive Visual Approach [0.0]
我々は,AIツールを用いて歌の感情的内容を操作する新しい方法を提案する。
私たちのゴールは、元のメロディをできるだけそのままにして、望ましい感情を達成することです。
この研究は、オンデマンドのカスタム音楽生成、既存の作品の自動リミックス、感情の進行に合わせて調整された音楽プレイリストに寄与する可能性がある。
論文 参考訳(メタデータ) (2024-06-12T20:12:29Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
私たちは、ミュージシャンが映画の脚本だけでなく、視覚化を通して音楽を作る方法にインスピレーションを受けています。
本稿では,テキスト記述と対応する画像からの手がかりを効果的に利用して音楽を合成するモデルであるMeLFusionを提案する。
音楽合成パイプラインに視覚情報を加えることで、生成した音楽の質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-06-07T06:38:59Z) - EmoSpeaker: One-shot Fine-grained Emotion-Controlled Talking Face
Generation [34.5592743467339]
微粒な顔のアニメーションを生成する視覚属性誘導型オーディオデカップラを提案する。
より正確な感情表現を実現するために,よりきめ細かな感情係数予測モジュールを導入する。
提案手法であるEmoSpeakerは,表情の変動や唇の同期の点で,既存の感情音声生成法よりも優れていた。
論文 参考訳(メタデータ) (2024-02-02T14:04:18Z) - Video2Music: Suitable Music Generation from Videos using an Affective
Multimodal Transformer model [32.801213106782335]
我々は、提供されたビデオにマッチできる生成型音楽AIフレームワーク、Video2Musicを開発した。
そこで本研究では,映像コンテンツにマッチする楽曲を感情的に生成する手法を提案する。
論文 参考訳(メタデータ) (2023-11-02T03:33:00Z) - PIRenderer: Controllable Portrait Image Generation via Semantic Neural
Rendering [56.762094966235566]
ポートレート画像ニューラルレンダは、3次元の変形可能な顔モデルのパラメータで顔の動きを制御するために提案される。
提案モデルでは直感的な修正によって正確な動きで写真リアルなポートレート画像を生成することができる。
本モデルでは、単一の参照画像と駆動音声ストリームのみから、説得力のある動きでコヒーレントな動画を生成することができる。
論文 参考訳(メタデータ) (2021-09-17T07:24:16Z) - Emotion-Based End-to-End Matching Between Image and Music in
Valence-Arousal Space [80.49156615923106]
イメージと音楽に類似した感情を合わせることは、感情の知覚をより鮮明で強くするのに役立つ。
既存の感情に基づく画像と音楽のマッチング手法では、限られたカテゴリーの感情状態を使用するか、非現実的なマルチステージパイプラインを使用してマッチングモデルを訓練する。
本稿では,連続的原子価覚醒空間(VA)における感情に基づく画像と音楽のエンドツーエンドマッチングについて検討する。
論文 参考訳(メタデータ) (2020-08-22T20:12:23Z) - Foley Music: Learning to Generate Music from Videos [115.41099127291216]
Foley Musicは、楽器を演奏する人々に関するサイレントビデオクリップのために、可愛らしい音楽を合成できるシステムだ。
まず、ビデオから音楽生成に成功するための2つの重要な中間表現、すなわち、ビデオからのボディーキーポイントと、オーディオ録音からのMIDIイベントを識別する。
身体の動きに応じてMIDIイベントシーケンスを正確に予測できるグラフ$-$Transformerフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-21T17:59:06Z) - Music Gesture for Visual Sound Separation [121.36275456396075]
ミュージック・ジェスチャ(Music Gesture)は、音楽演奏時の演奏者の身体と指の動きを明示的にモデル化するキーポイントに基づく構造化表現である。
まず、コンテキスト対応グラフネットワークを用いて、視覚的コンテキストと身体力学を統合し、その後、身体の動きと対応する音声信号とを関連付けるために、音声-視覚融合モデルを適用する。
論文 参考訳(メタデータ) (2020-04-20T17:53:46Z) - Emotional Video to Audio Transformation Using Deep Recurrent Neural
Networks and a Neuro-Fuzzy System [8.900866276512364]
現在のアプローチは、音楽生成ステップにおけるビデオの感情的特徴を見落としている。
本稿では,適応型ニューロファジィ推論システムを用いて映像の感情を予測するハイブリッドディープニューラルネットワークを提案する。
我々のモデルは、両方のデータセットのビューアーから類似した感情を引き出すシーンにマッチする音声を効果的に生成できる。
論文 参考訳(メタデータ) (2020-04-05T07:18:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。