MAMMAL -- Molecular Aligned Multi-Modal Architecture and Language
- URL: http://arxiv.org/abs/2410.22367v3
- Date: Tue, 06 May 2025 07:46:11 GMT
- Title: MAMMAL -- Molecular Aligned Multi-Modal Architecture and Language
- Authors: Yoel Shoshan, Moshiko Raboh, Michal Ozery-Flato, Vadim Ratner, Alex Golts, Jeffrey K. Weber, Ella Barkan, Simona Rabinovici-Cohen, Sagi Polaczek, Ido Amos, Ben Shapira, Liam Hazan, Matan Ninio, Sivan Ravid, Michael M. Danziger, Yosi Shamay, Sharon Kurant, Joseph A. Morrone, Parthasarathy Suryanarayanan, Michal Rosen-Zvi, Efrat Hexter,
- Abstract summary: MAMMAL is a versatile method applied to create a multi-task foundation model that learns from large-scale biological datasets across diverse modalities.<n> evaluated on eleven diverse downstream tasks, it reaches a new state of the art (SOTA) in nine tasks and is comparable to SOTA in two tasks.<n> explored Alphafold 3 binding prediction capabilities on antibody-antigen and nanobody-antigen complexes showing significantly better classification performance of MAMMAL in 3 out of 4 targets.
- Score: 0.4631438140637248
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large language models applied to vast biological datasets have the potential to transform biology by uncovering disease mechanisms and accelerating drug development. However, current models are often siloed, trained separately on small-molecules, proteins, or transcriptomic data, limiting their ability to capture complex, multi-modal interactions. Effective drug discovery requires computational tools that integrate multiple biological entities while supporting prediction and generation, a challenge existing models struggle to address. For this purpose, we present MAMMAL - Molecular Aligned Multi-Modal Architecture and Language - a versatile method applied to create a multi-task foundation model that learns from large-scale biological datasets across diverse modalities, including proteins, small-molecules, and omics. MAMMAL's structured prompt syntax supports classification, regression, and generation tasks while handling token and scalar inputs and outputs. Evaluated on eleven diverse downstream tasks, it reaches a new state of the art (SOTA) in nine tasks and is comparable to SOTA in two tasks, all within a unified architecture, unlike prior task-specific models. Additionally, we explored Alphafold 3 binding prediction capabilities on antibody-antigen and nanobody-antigen complexes showing significantly better classification performance of MAMMAL in 3 out of 4 targets. The model code and pretrained weights are publicly available at https://github.com/BiomedSciAI/biomed-multi-alignment and https://huggingface.co/ibm/biomed.omics.bl.sm.ma-ted-458m
Related papers
- Masked Omics Modeling for Multimodal Representation Learning across Histopathology and Molecular Profiles [0.0]
Self-supervised learning has driven major advances in computational pathology.<n>However, histopathology alone often falls short for molecular characterization and understanding clinical outcomes.<n>We introduce MORPHEUS, a unified transformer-based pre-training framework that encodes both histopathology and multi-omics data into a shared latent space.
arXiv Detail & Related papers (2025-08-01T15:29:26Z) - Model Evolution Framework with Genetic Algorithm for Multi-Task Reinforcement Learning [85.91908329457081]
Multi-task reinforcement learning employs a single policy to complete various tasks, aiming to develop an agent with generalizability across different scenarios.
Existing approaches typically use a routing network to generate specific routes for each task and reconstruct a set of modules into diverse models to complete multiple tasks simultaneously.
We propose a Model Evolution framework with Genetic Algorithm (MEGA), which enables the model to evolve during training according to the difficulty of the tasks.
arXiv Detail & Related papers (2025-02-19T09:22:34Z) - Life-Code: Central Dogma Modeling with Multi-Omics Sequence Unification [53.488387420073536]
Life-Code is a comprehensive framework that spans different biological functions.
Life-Code achieves state-of-the-art performance on various tasks across three omics.
arXiv Detail & Related papers (2025-02-11T06:53:59Z) - Biology Instructions: A Dataset and Benchmark for Multi-Omics Sequence Understanding Capability of Large Language Models [51.316001071698224]
We introduce Biology-Instructions, the first large-scale multi-omics biological sequences-related instruction-tuning dataset.<n>This dataset can bridge the gap between large language models (LLMs) and complex biological sequences-related tasks.<n>We also develop a strong baseline called ChatMultiOmics with a novel three-stage training pipeline.
arXiv Detail & Related papers (2024-12-26T12:12:23Z) - COMET: Benchmark for Comprehensive Biological Multi-omics Evaluation Tasks and Language Models [56.81513758682858]
COMET aims to evaluate models across single-omics, cross-omics, and multi-omics tasks.
First, we curate and develop a diverse collection of downstream tasks and datasets covering key structural and functional aspects in DNA, RNA, and proteins.
Then, we evaluate existing foundational language models for DNA, RNA, and proteins, as well as the newly proposed multi-omics method.
arXiv Detail & Related papers (2024-12-13T18:42:00Z) - OneProt: Towards Multi-Modal Protein Foundation Models [5.440531199006399]
We introduce OneProt, a multi-modal AI for proteins that integrates structural, sequence, alignment, and binding site data.
It surpasses state-of-the-art methods in various downstream tasks, including metal ion binding classification, gene-ontology annotation, and enzyme function prediction.
This work expands multi-modal capabilities in protein models, paving the way for applications in drug discovery, biocatalytic reaction planning, and protein engineering.
arXiv Detail & Related papers (2024-11-07T16:54:54Z) - BSM: Small but Powerful Biological Sequence Model for Genes and Proteins [6.6055625629542085]
We introduce BSM, a small but powerful mixed-modal biological sequence foundation model.
It is trained on three types of data: RefSeq, Gene Related Sequences, and interleaved biological sequences from the web.
It significantly enhances learning efficiency and cross-modal representation, outperforming models trained solely on unimodal data.
arXiv Detail & Related papers (2024-10-15T11:12:28Z) - HeMeNet: Heterogeneous Multichannel Equivariant Network for Protein Multitask Learning [33.972536394058004]
We propose a neural network model to address multiple tasks jointly upon the input of 3D protein structures.
In particular, we first construct a standard structure-based multi-task benchmark called Protein-MT.
Then, we develop a novel graph neural network for multi-task learning, dubbed Heterogeneous Multichannel Equivariant Network (HeMeNet)
arXiv Detail & Related papers (2024-04-02T06:53:45Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Target-aware Variational Auto-encoders for Ligand Generation with
Multimodal Protein Representation Learning [2.01243755755303]
We introduce TargetVAE, a target-aware auto-encoder that generates with high binding affinities to arbitrary protein targets.
This is the first effort to unify different representations of proteins into a single model that we name as Protein Multimodal Network (PMN)
arXiv Detail & Related papers (2023-08-02T12:08:17Z) - Generative Pretrained Autoregressive Transformer Graph Neural Network
applied to the Analysis and Discovery of Novel Proteins [0.0]
We report a flexible language-model based deep learning strategy, applied here to solve complex forward and inverse problems in protein modeling.
The model is applied to predict secondary structure content (per-residue level and overall content), protein solubility, and sequencing tasks.
We find that adding additional tasks yields emergent synergies that the model exploits in improving overall performance.
arXiv Detail & Related papers (2023-05-07T12:30:24Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Uni-Perceiver: Pre-training Unified Architecture for Generic Perception
for Zero-shot and Few-shot Tasks [73.63892022944198]
We present a generic perception architecture named Uni-Perceiver.
It processes a variety of modalities and tasks with unified modeling and shared parameters.
Results show that our pre-trained model without any tuning can achieve reasonable performance even on novel tasks.
arXiv Detail & Related papers (2021-12-02T18:59:50Z) - OmiEmbed: reconstruct comprehensive phenotypic information from
multi-omics data using multi-task deep learning [19.889861433855053]
High-dimensional omics data contains intrinsic biomedical information crucial for personalised medicine.
It is challenging to capture them from genome-wide data due to the large number of molecular features and small number of available samples.
We proposed a unified multi-task deep learning framework called OmiEmbed to capture a holistic and relatively precise profile of phenotype from high-dimensional omics data.
arXiv Detail & Related papers (2021-02-03T07:34:29Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties.
We propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution.
arXiv Detail & Related papers (2020-10-05T20:18:42Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.