Error Bounds for Deep Learning-based Uncertainty Propagation in SDEs
- URL: http://arxiv.org/abs/2410.22371v1
- Date: Mon, 28 Oct 2024 23:25:55 GMT
- Title: Error Bounds for Deep Learning-based Uncertainty Propagation in SDEs
- Authors: Chun-Wei Kong, Luca Laurenti, Jay McMahon, Morteza Lahijanian,
- Abstract summary: probability density function (PDF) represents uncertainty of processes.
It is generally infeasible to solve the Fokker-Planck partial differential equation (FP-PDE) in closed form.
We show that physics-informed neural networks (PINNs) can be trained to approximate the solution PDF using existing methods.
- Score: 11.729744197698718
- License:
- Abstract: Stochastic differential equations are commonly used to describe the evolution of stochastic processes. The uncertainty of such processes is best represented by the probability density function (PDF), whose evolution is governed by the Fokker-Planck partial differential equation (FP-PDE). However, it is generally infeasible to solve the FP-PDE in closed form. In this work, we show that physics-informed neural networks (PINNs) can be trained to approximate the solution PDF using existing methods. The main contribution is the analysis of the approximation error: we develop a theory to construct an arbitrary tight error bound with PINNs. In addition, we derive a practical error bound that can be efficiently constructed with existing training methods. Finally, we explain that this error-bound theory generalizes to approximate solutions of other linear PDEs. Several numerical experiments are conducted to demonstrate and validate the proposed methods.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers [32.57938108395521]
A class of mechanistic models, Linear partial differential equations, are used to describe physical processes such as heat transfer, electromagnetism, and wave propagation.
specialized numerical methods based on discretization are used to solve PDEs.
By ignoring parameter and measurement uncertainty, classical PDE solvers may fail to produce consistent estimates of their inherent approximation error.
arXiv Detail & Related papers (2022-12-23T17:02:59Z) - Fully probabilistic deep models for forward and inverse problems in
parametric PDEs [1.9599274203282304]
We introduce a physics-driven deep latent variable model (PDDLVM) to learn simultaneously parameter-to-solution (forward) and solution-to- parameter (inverse) maps of PDEs.
The proposed framework can be easily extended to seamlessly integrate observed data to solve inverse problems and to build generative models.
We demonstrate the efficiency and robustness of our method on finite element discretized parametric PDE problems.
arXiv Detail & Related papers (2022-08-09T15:40:53Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
We introduce a practical method to enforce partial differential equation (PDE) constraints for functions defined by neural networks (NNs)
We develop a differentiable PDE-constrained layer that can be incorporated into any NN architecture.
Our results show that incorporating hard constraints directly into the NN architecture achieves much lower test error when compared to training on an unconstrained objective.
arXiv Detail & Related papers (2022-07-18T15:11:43Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
We propose a neural solver to learn an optimal iterative scheme in a data-driven fashion for any class of PDEs.
We provide theoretical guarantees for the correctness and convergence of neural solvers analogous to conventional iterative solvers.
arXiv Detail & Related papers (2021-09-03T12:03:10Z) - Solving PDEs on Unknown Manifolds with Machine Learning [8.220217498103315]
This paper presents a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifold.
We show that the proposed NN solver can robustly generalize the PDE on new data points with errors that are almost identical to generalizations on new data points.
arXiv Detail & Related papers (2021-06-12T03:55:15Z) - Estimates on the generalization error of Physics Informed Neural
Networks (PINNs) for approximating PDEs [16.758334184623152]
We provide rigorous upper bounds on the generalization error of PINNs approximating solutions of the forward problem for PDEs.
An abstract formalism is introduced and stability properties of the underlying PDE are leveraged to derive an estimate for the generalization error.
arXiv Detail & Related papers (2020-06-29T16:05:48Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.