Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers
- URL: http://arxiv.org/abs/2212.12474v6
- Date: Sun, 28 Apr 2024 15:57:36 GMT
- Title: Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers
- Authors: Marvin Pförtner, Ingo Steinwart, Philipp Hennig, Jonathan Wenger,
- Abstract summary: A class of mechanistic models, Linear partial differential equations, are used to describe physical processes such as heat transfer, electromagnetism, and wave propagation.
specialized numerical methods based on discretization are used to solve PDEs.
By ignoring parameter and measurement uncertainty, classical PDE solvers may fail to produce consistent estimates of their inherent approximation error.
- Score: 32.57938108395521
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Linear partial differential equations (PDEs) are an important, widely applied class of mechanistic models, describing physical processes such as heat transfer, electromagnetism, and wave propagation. In practice, specialized numerical methods based on discretization are used to solve PDEs. They generally use an estimate of the unknown model parameters and, if available, physical measurements for initialization. Such solvers are often embedded into larger scientific models with a downstream application and thus error quantification plays a key role. However, by ignoring parameter and measurement uncertainty, classical PDE solvers may fail to produce consistent estimates of their inherent approximation error. In this work, we approach this problem in a principled fashion by interpreting solving linear PDEs as physics-informed Gaussian process (GP) regression. Our framework is based on a key generalization of the Gaussian process inference theorem to observations made via an arbitrary bounded linear operator. Crucially, this probabilistic viewpoint allows to (1) quantify the inherent discretization error; (2) propagate uncertainty about the model parameters to the solution; and (3) condition on noisy measurements. Demonstrating the strength of this formulation, we prove that it strictly generalizes methods of weighted residuals, a central class of PDE solvers including collocation, finite volume, pseudospectral, and (generalized) Galerkin methods such as finite element and spectral methods. This class can thus be directly equipped with a structured error estimate. In summary, our results enable the seamless integration of mechanistic models as modular building blocks into probabilistic models by blurring the boundaries between numerical analysis and Bayesian inference.
Related papers
- Error Bounds for Deep Learning-based Uncertainty Propagation in SDEs [11.729744197698718]
probability density function (PDF) represents uncertainty of processes.
It is generally infeasible to solve the Fokker-Planck partial differential equation (FP-PDE) in closed form.
We show that physics-informed neural networks (PINNs) can be trained to approximate the solution PDF using existing methods.
arXiv Detail & Related papers (2024-10-28T23:25:55Z) - Amortized Variational Inference for Deep Gaussian Processes [0.0]
Deep Gaussian processes (DGPs) are multilayer generalizations of Gaussian processes (GPs)
We introduce amortized variational inference for DGPs, which learns an inference function that maps each observation to variational parameters.
Our method performs similarly or better than previous approaches at less computational cost.
arXiv Detail & Related papers (2024-09-18T20:23:27Z) - A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
A physics-driven GraphSAGE approach is presented to solve problems governed by irregular PDEs.
A distance-related edge feature and a feature mapping strategy are devised to help training and convergence.
The robust PDE surrogate model for heat conduction problems parameterized by the Gaussian singularity random field source is successfully established.
arXiv Detail & Related papers (2024-03-13T14:25:15Z) - Causal Modeling with Stationary Diffusions [89.94899196106223]
We learn differential equations whose stationary densities model a system's behavior under interventions.
We show that they generalize to unseen interventions on their variables, often better than classical approaches.
Our inference method is based on a new theoretical result that expresses a stationarity condition on the diffusion's generator in a reproducing kernel Hilbert space.
arXiv Detail & Related papers (2023-10-26T14:01:17Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Fully probabilistic deep models for forward and inverse problems in
parametric PDEs [1.9599274203282304]
We introduce a physics-driven deep latent variable model (PDDLVM) to learn simultaneously parameter-to-solution (forward) and solution-to- parameter (inverse) maps of PDEs.
The proposed framework can be easily extended to seamlessly integrate observed data to solve inverse problems and to build generative models.
We demonstrate the efficiency and robustness of our method on finite element discretized parametric PDE problems.
arXiv Detail & Related papers (2022-08-09T15:40:53Z) - Global Convergence of Over-parameterized Deep Equilibrium Models [52.65330015267245]
A deep equilibrium model (DEQ) is implicitly defined through an equilibrium point of an infinite-depth weight-tied model with an input-injection.
Instead of infinite computations, it solves an equilibrium point directly with root-finding and computes gradients with implicit differentiation.
We propose a novel probabilistic framework to overcome the technical difficulty in the non-asymptotic analysis of infinite-depth weight-tied models.
arXiv Detail & Related papers (2022-05-27T08:00:13Z) - Bayesian Numerical Methods for Nonlinear Partial Differential Equations [4.996064986640264]
nonlinear partial differential equations (PDEs) pose substantial challenges from an inferential perspective.
This paper extends earlier work on linear PDEs to a general class of initial value problems specified by nonlinear PDEs.
A suitable prior model for the solution of the PDE is identified using novel theoretical analysis of the sample path properties of Mat'ern processes.
arXiv Detail & Related papers (2021-04-22T14:02:10Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.