論文の概要: Bridging the Gap for Test-Time Multimodal Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2412.07121v2
- Date: Sat, 08 Feb 2025 14:41:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:26:57.415037
- Title: Bridging the Gap for Test-Time Multimodal Sentiment Analysis
- Title(参考訳): テスト時間マルチモーダル感性分析のためのギャップのブリッジ化
- Authors: Zirun Guo, Tao Jin, Wenlong Xu, Wang Lin, Yangyang Wu,
- Abstract要約: マルチモーダル感情分析(マルチモーダル感情分析、Multimodal sentiment analysis、MSA)は、複数のモーダルを通して人間の感情や感情を理解し、認識することを目的とした、新たな研究トピックである。
本稿では,コントラスト適応(Contrastive Adaptation)と安定擬似ラベル生成(Stable Pseudo-label generation, CASP)の2つの手法を提案する。
- 参考スコア(独自算出の注目度): 7.871669754963032
- License:
- Abstract: Multimodal sentiment analysis (MSA) is an emerging research topic that aims to understand and recognize human sentiment or emotions through multiple modalities. However, in real-world dynamic scenarios, the distribution of target data is always changing and different from the source data used to train the model, which leads to performance degradation. Common adaptation methods usually need source data, which could pose privacy issues or storage overheads. Therefore, test-time adaptation (TTA) methods are introduced to improve the performance of the model at inference time. Existing TTA methods are always based on probabilistic models and unimodal learning, and thus can not be applied to MSA which is often considered as a multimodal regression task. In this paper, we propose two strategies: Contrastive Adaptation and Stable Pseudo-label generation (CASP) for test-time adaptation for multimodal sentiment analysis. The two strategies deal with the distribution shifts for MSA by enforcing consistency and minimizing empirical risk, respectively. Extensive experiments show that CASP brings significant and consistent improvements to the performance of the model across various distribution shift settings and with different backbones, demonstrating its effectiveness and versatility. Our codes are available at https://github.com/zrguo/CASP.
- Abstract(参考訳): マルチモーダル感情分析(マルチモーダル感情分析、Multimodal sentiment analysis、MSA)は、複数のモーダルを通して人間の感情や感情を理解し、認識することを目的とした、新たな研究トピックである。
しかし、現実の動的シナリオでは、ターゲットデータの分布は常に変化し、モデルのトレーニングに使用されるソースデータとは異なるため、パフォーマンスが低下する。
一般的なアダプティブメソッドは通常、プライバシの問題やストレージオーバーヘッドを引き起こす可能性のあるソースデータが必要です。
そこで,テスト時間適応(TTA)手法を導入し,モデルの性能を推定時に向上させる。
既存のTTA手法は常に確率的モデルと単項学習に基づいており、マルチモーダル回帰タスクと見なされるMSAには適用できない。
本稿では,マルチモーダル感情分析のためのテスト時間適応のためのコントラスト適応(Contrastive Adaptation)と安定擬似ラベル生成(Stable Pseudo-label generation, CASP)の2つの戦略を提案する。
この2つの戦略は、MSAの分散シフトにそれぞれ一貫性と経験的リスクを最小化することで対処する。
大規模な実験により、CASPは様々な分散シフト設定と異なるバックボーンでモデルの性能を著しく一貫した改善をもたらし、その有効性と汎用性を示している。
私たちのコードはhttps://github.com/zrguo/CASP.orgで公開されています。
関連論文リスト
- Analytic Continual Test-Time Adaptation for Multi-Modality Corruption [23.545997349882857]
テスト時間適応(TTA)は、トレーニング済みのモデルがソースとターゲットデータセット間のギャップを埋めることを支援することを目的としている。
本稿では,MM-CTTAタスクのためのMDAA(Multi-modality Dynamic Analytic Adapter)を提案する。
MDAAはMM-CTTA上での最先端性能を実現し,信頼性の高いモデル適応を実現する。
論文 参考訳(メタデータ) (2024-10-29T01:21:24Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - DATTA: Towards Diversity Adaptive Test-Time Adaptation in Dynamic Wild World [6.816521410643928]
本稿では,QoE(Quality of Experience)の改善を目的としたDATTA(Diversity Adaptive Test-Time Adaptation)という手法を提案する。
バッチの多様性を評価するダイバーシティ識別(DD)、DDの洞察に基づく正規化手法を調整するためのダイバーシティ適応バッチ正規化(DABN)、モデルを選択的に微調整するダイバーシティ適応細調整(DAFT)の3つの主要なコンポーネントが特徴である。
実験結果から,本手法の精度は最先端手法と比較して最大21%向上することがわかった。
論文 参考訳(メタデータ) (2024-08-15T09:50:11Z) - Test-Time Domain Generalization for Face Anti-Spoofing [60.94384914275116]
Face Anti-Spoofing (FAS) は、顔認識システムをプレゼンテーション攻撃から保護するために重要である。
本稿では,テストデータを活用してモデルの一般化性を高める新しいテスト時間領域一般化フレームワークについて紹介する。
テスト時間スタイル投影 (TTSP) とディバーススタイルシフトシミュレーション (DSSS) によって構成された本手法は, 目に見えないデータを領域空間に効果的に投影する。
論文 参考訳(メタデータ) (2024-03-28T11:50:23Z) - Adaptive Test-Time Personalization for Federated Learning [51.25437606915392]
テスト時パーソナライズド・フェデレーション・ラーニング(TTPFL)と呼ばれる新しい設定を導入する。
TTPFLでは、クライアントはテスト期間中にラベル付きデータに頼ることなく、教師なしの方法でグローバルモデルをローカルに適応する。
本稿では,ソースドメイン間の分散シフトから,モデル内の各モジュールの適応率を適応的に学習する ATP という新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-28T20:42:47Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
拡散確率モデル(DPM)を用いた合成カウンターファクトの生成を利用したアンサンブルの多様化フレームワークを提案する。
拡散誘導型分散化は,データ収集を必要とする従来の手法に匹敵するアンサンブル多様性を達成し,ショートカットからの注意を回避できることを示す。
論文 参考訳(メタデータ) (2023-10-03T17:37:52Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
本稿では,自律運転のためのデータセット,すなわちCLAD-CとShiFTを用いたテスト時間適応手法の検証を提案する。
現在のテスト時間適応手法は、ドメインシフトの様々な程度を効果的に扱うのに苦労している。
モデル安定性を高めるために、小さなメモリバッファを組み込むことで、確立された自己学習フレームワークを強化する。
論文 参考訳(メタデータ) (2023-09-18T19:34:23Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
TTA(Test-Time Adaptation)は、分散シフトの下で堅牢性に取り組むための有望なアプローチとして登場した。
TTABは,10の最先端アルゴリズム,多種多様な分散シフト,および2つの評価プロトコルを含むテスト時間適応ベンチマークである。
論文 参考訳(メタデータ) (2023-06-06T09:35:29Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - Few-shot Multimodal Sentiment Analysis based on Multimodal Probabilistic
Fusion Prompts [30.15646658460899]
ソーシャルメディア上でのマルチモーダルコンテンツの普及により,マルチモーダル感情分析が注目されている。
この地域の既存の研究は、大規模に監督されたデータに大きく依存している。
マルチモーダルな感情検出のために,様々なモーダルから多様な手がかりを生かしたマルチモーダル確率核融合法(MultiPoint)を提案する。
論文 参考訳(メタデータ) (2022-11-12T08:10:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。