EfficientNet with Hybrid Attention Mechanisms for Enhanced Breast Histopathology Classification: A Comprehensive Approach
- URL: http://arxiv.org/abs/2410.22392v2
- Date: Mon, 04 Nov 2024 09:56:16 GMT
- Title: EfficientNet with Hybrid Attention Mechanisms for Enhanced Breast Histopathology Classification: A Comprehensive Approach
- Authors: Naren Sengodan,
- Abstract summary: This paper introduces a novel approach integrating Hybrid EfficientNet models with advanced attention mechanisms to enhance feature extraction and focus on critical image regions.
We evaluate the performance of our models across multiple magnification scales using publicly available hispathology datasets.
The results are validated using metrics such as accuracy, F1-score, precision, and recall, demonstrating the clinical potential of our model in improving diagnostic accuracy.
- Score: 0.0
- License:
- Abstract: Breast cancer histopathology image classification is crucial for early cancer detection, offering the potential to reduce mortality rates through timely diagnosis. This paper introduces a novel approach integrating Hybrid EfficientNet models with advanced attention mechanisms, including Convolutional Block Attention Module (CBAM), Self-Attention, and Deformable Attention, to enhance feature extraction and focus on critical image regions. We evaluate the performance of our models across multiple magnification scales using publicly available histopathological datasets. Our method achieves significant improvements, with accuracy reaching 98.42% at 400X magnification, surpassing several state-of-the-art models, including VGG and ResNet architectures. The results are validated using metrics such as accuracy, F1-score, precision, and recall, demonstrating the clinical potential of our model in improving diagnostic accuracy. Furthermore, the proposed method shows increased computational efficiency, making it suitable for integration into real-time diagnostic workflows.
Related papers
- Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
Non-small cell lung cancer (NSCLC) is a predominant cause of cancer mortality worldwide.
In this paper, we introduce an innovative integration of multi-modal data, synthesizing fused medical imaging (CT and PET scans) with clinical health records and genomic data.
Our research surpasses existing approaches, as evidenced by a substantial enhancement in NSCLC detection and classification precision.
arXiv Detail & Related papers (2024-09-27T12:59:29Z) - Comparative Analysis of Transfer Learning Models for Breast Cancer Classification [10.677937909900486]
This study investigates the efficiency of deep learning models in distinguishing between Invasive Ductal Carcinoma (IDC) and non-IDC in histopathology slides.
We conducted a comparison examination of eight sophisticated models: ResNet-50, DenseNet-121, ResNeXt-50, Vision Transformer (ViT), GoogLeNet (Inception v3), EfficientNet, MobileNet, and SqueezeNet.
arXiv Detail & Related papers (2024-08-29T18:49:32Z) - Hybrid Deep Learning Framework for Enhanced Melanoma Detection [3.004788114489393]
The primary objective of our study is to enhance the accuracy and efficiency of melanoma detection through an innovative hybrid approach.
We utilize the HAM10000 dataset to meticulously train the U-Net model, enabling it to precisely segment cancerous regions.
We employ the ISIC 2020 dataset to train the EfficientNet model, optimizing it for the binary classification of skin cancer.
arXiv Detail & Related papers (2024-07-16T04:58:47Z) - Optimizing Lymphocyte Detection in Breast Cancer Whole Slide Imaging through Data-Centric Strategies [0.2796197251957244]
We develop a data-centric optimization pipeline that attains great lymphocyte detection performance using an off-the-shelf YOLOv5 model.
We showcase the interest of this approach in the context of breast cancer where our strategies lead to good lymphocyte detection performances.
arXiv Detail & Related papers (2024-05-22T14:59:50Z) - Optimizing Universal Lesion Segmentation: State Space Model-Guided Hierarchical Networks with Feature Importance Adjustment [0.0]
We introduce Mamba-Ahnet, a novel integration of State Space Model (SSM) and Advanced Hierarchical Network (AHNet) within the MAMBA framework.
Mamba-Ahnet combines SSM's feature extraction and comprehension with AHNet's attention mechanisms and image reconstruction, aiming to enhance segmentation accuracy and robustness.
arXiv Detail & Related papers (2024-04-26T08:15:43Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for
Attribute-Based Medical Image Diagnosis [42.624671531003166]
We introduce a hybrid neuro-probabilistic reasoning algorithm for verifiable attribute-based medical image diagnosis.
We have successfully applied our hybrid reasoning algorithm to two challenging medical image diagnosis tasks.
arXiv Detail & Related papers (2022-08-19T12:06:46Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.