論文の概要: AAAR-1.0: Assessing AI's Potential to Assist Research
- arxiv url: http://arxiv.org/abs/2410.22394v1
- Date: Tue, 29 Oct 2024 17:58:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:28:20.232621
- Title: AAAR-1.0: Assessing AI's Potential to Assist Research
- Title(参考訳): AAAR-1.0:AIが研究を支援する可能性を評価する
- Authors: Renze Lou, Hanzi Xu, Sijia Wang, Jiangshu Du, Ryo Kamoi, Xiaoxin Lu, Jian Xie, Yuxuan Sun, Yusen Zhang, Jihyun Janice Ahn, Hongchao Fang, Zhuoyang Zou, Wenchao Ma, Xi Li, Kai Zhang, Congying Xia, Lifu Huang, Wenpeng Yin,
- Abstract要約: AAAR-1.0は,大規模言語モデル(LLM)の性能を評価するためのベンチマークデータセットである。
AAAR-1.0は、以前のベンチマークと大きく異なる2つの主要な方法である: 第一に、明らかに研究指向で、深いドメインの専門知識を必要とするタスク、第二に、研究者が日々従事する主要なアクティビティを反映する研究者指向である。
- 参考スコア(独自算出の注目度): 34.88341605349765
- License:
- Abstract: Numerous studies have assessed the proficiency of AI systems, particularly large language models (LLMs), in facilitating everyday tasks such as email writing, question answering, and creative content generation. However, researchers face unique challenges and opportunities in leveraging LLMs for their own work, such as brainstorming research ideas, designing experiments, and writing or reviewing papers. In this study, we introduce AAAR-1.0, a benchmark dataset designed to evaluate LLM performance in three fundamental, expertise-intensive research tasks: (i) EquationInference, assessing the correctness of equations based on the contextual information in paper submissions; (ii) ExperimentDesign, designing experiments to validate research ideas and solutions; (iii) PaperWeakness, identifying weaknesses in paper submissions; and (iv) REVIEWCRITIQUE, identifying each segment in human reviews is deficient or not. AAAR-1.0 differs from prior benchmarks in two key ways: first, it is explicitly research-oriented, with tasks requiring deep domain expertise; second, it is researcher-oriented, mirroring the primary activities that researchers engage in on a daily basis. An evaluation of both open-source and proprietary LLMs reveals their potential as well as limitations in conducting sophisticated research tasks. We will keep iterating AAAR-1.0 to new versions.
- Abstract(参考訳): AIシステム、特に大規模言語モデル(LLM)の能力を評価する多くの研究が、メールの書き起こし、質問応答、クリエイティブコンテンツ生成といった日常的なタスクを円滑に進めている。
しかし研究者は、研究アイデアのブレインストーミング、実験の設計、論文の執筆やレビューなど、独自の研究にLLMを活用する上で、ユニークな課題と機会に直面している。
本研究では,3つの基本的な専門的な研究課題において,LLMの性能を評価するためのベンチマークデータセットであるAAAR-1.0を紹介する。
一 論文提出の文脈情報に基づく方程式の正当性を評価する等式推論
2 実験設計、研究のアイデア及び解決策の検証のための実験の設計
三 書類提出の弱さを識別する紙弱さ
(四)人間レビューにおける各セグメントの識別が不十分であるか否か。
AAAR-1.0は、以前のベンチマークと大きく異なる2つの主要な方法である: 第一に、明らかに研究指向で、深いドメインの専門知識を必要とするタスク、第二に、研究者が日々従事する主要なアクティビティを反映する研究者指向である。
オープンソースとプロプライエタリなLLMの評価は、その可能性と高度な研究タスクの実行の限界を明らかにしている。
AAAR-1.0を新しいバージョンに繰り返します。
関連論文リスト
- IdeaBench: Benchmarking Large Language Models for Research Idea Generation [19.66218274796796]
大規模言語モデル(LLM)は、人々が人工知能(AI)システムと対話する方法を変革した。
包括的データセットと評価フレームワークを含むベンチマークシステムであるIdeanBenchを提案する。
私たちのデータセットは、さまざまな影響力のある論文のタイトルと要約と、参照された作品で構成されています。
まず、GPT-4oを用いて、新規性や実現可能性などのユーザ固有の品質指標に基づいて、アイデアをランク付けし、スケーラブルなパーソナライズを可能にする。
論文 参考訳(メタデータ) (2024-10-31T17:04:59Z) - Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
科学文献の急激な増加は、研究者が最近の進歩と意義ある研究方向を見極めるのを困難にしている。
大規模言語モデル(LLM)の最近の発展は、新しい研究のアイデアを自動生成するための有望な道のりを示唆している。
本研究では, チェーン構造に関連文献を整理し, 研究領域の進展を効果的に反映する, LLMベースのエージェントであるChain-of-Ideas(CoI)エージェントを提案する。
論文 参考訳(メタデータ) (2024-10-17T03:26:37Z) - Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers [90.26363107905344]
大型言語モデル(LLM)は、科学的な発見を加速する可能性についての楽観主義を喚起した。
LLMシステムは、新しい専門家レベルのアイデアを生み出すための第一歩を踏み出すことができるという評価はない。
論文 参考訳(メタデータ) (2024-09-06T08:25:03Z) - Reconciling Methodological Paradigms: Employing Large Language Models as Novice Qualitative Research Assistants in Talent Management Research [1.0949553365997655]
本研究では,RAGに基づくLarge Language Models (LLMs) を用いた面接文の解析手法を提案する。
この研究の斬新さは、初歩的な研究助手として機能するLSMによって強化された研究調査をストラテジー化することにある。
以上の結果から, LLM拡張RAGアプローチは, 手動で生成したトピックと比較して, 興味のあるトピックを抽出できることが示唆された。
論文 参考訳(メタデータ) (2024-08-20T17:49:51Z) - Systematic Task Exploration with LLMs: A Study in Citation Text Generation [63.50597360948099]
大規模言語モデル(LLM)は、複雑な創造的自然言語生成(NLG)タスクの定義と実行において、前例のない柔軟性をもたらす。
本稿では,系統的な入力操作,参照データ,出力測定からなる3成分研究フレームワークを提案する。
我々はこのフレームワークを用いて引用テキスト生成を探索する。これは一般的なNLPタスクであり、タスク定義と評価基準に関するコンセンサスを欠いている。
論文 参考訳(メタデータ) (2024-07-04T16:41:08Z) - LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
大規模言語モデル(LLM)は、様々な生成タスクにおいて顕著な汎用性を示している。
本研究は,NLP研究者を支援するLLMの話題に焦点を当てる。
私たちの知る限りでは、このような包括的な分析を提供するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-06-24T01:30:22Z) - ResearchArena: Benchmarking LLMs' Ability to Collect and Organize Information as Research Agents [21.17856299966841]
大規模言語モデル (LLM) は自然言語処理において様々なタスクで顕著な性能を示した。
我々はLLMエージェントが学術調査を行う能力を測定するベンチマーク「ResearchArena」を開発した。
論文 参考訳(メタデータ) (2024-06-13T03:26:30Z) - Apprentices to Research Assistants: Advancing Research with Large Language Models [0.0]
大規模言語モデル(LLM)は、様々な研究領域において強力なツールとして登場した。
本稿では,文献レビューと手動実験を通じてその可能性について考察する。
論文 参考訳(メタデータ) (2024-04-09T15:53:06Z) - Benchmarking Foundation Models with Language-Model-as-an-Examiner [47.345760054595246]
本稿では,新しいベンチマークフレームワークLanguage-Model-as-an-Examinerを提案する。
LMは、その知識に基づいて質問を定式化し、基準のない方法で応答を評価する、知識に富んだ検査者として機能する。
論文 参考訳(メタデータ) (2023-06-07T06:29:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。