Metalens formed by structured arrays of atomic emitters
- URL: http://arxiv.org/abs/2410.22469v1
- Date: Tue, 29 Oct 2024 19:02:28 GMT
- Title: Metalens formed by structured arrays of atomic emitters
- Authors: Francesco Andreoli, Charlie-Ray Mann, Alexander A. High, Darrick E. Chang,
- Abstract summary: Arrays of atomic emitters have proven to be a promising platform to manipulate and engineer optical properties.
We show that, by spatially tailoring the (sub-wavelength) lattice constants of three consecutive two-dimensional arrays of identical atomic emitters, one can realize a large transmission coefficient.
- Score: 41.94295877935867
- License:
- Abstract: Arrays of atomic emitters have proven to be a promising platform to manipulate and engineer optical properties, due to their efficient cooperative response to near-resonant light. Here, we theoretically investigate their use as an efficient metalens. We show that, by spatially tailoring the (sub-wavelength) lattice constants of three consecutive two-dimensional arrays of identical atomic emitters, one can realize a large transmission coefficient with arbitrary position-dependent phase shift, whose robustness against losses is enhanced by the collective response. To characterize the efficiency of this atomic metalens, we perform large-scale numerical simulations involving a substantial number of atoms ($N\sim 5\times 10^5$) that is considerably larger than comparable works. Our results suggest that low-loss, robust optical devices with complex functionalities, ranging from metasurfaces to computer-generated holograms, could be potentially assembled from properly engineered arrays of atomic emitters.
Related papers
- Cavity dark mode mediated by atom array without atomic scattering loss [6.344873011535255]
We observe a cavity dark mode, where the standing-wave nodes are dynamically locked to the positions of the atoms.
The dark mode is decoupled from the atoms, protecting the system from dissipation through atomic scattering.
We impart an arbitrary large phase shift on the converted optical fields by translating the atom array.
arXiv Detail & Related papers (2024-10-26T02:27:55Z) - Quantum interfaces with multilayered superwavelength atomic arrays [0.0]
We consider quantum light-matter interfaces comprised of multiple layers of two-dimensional atomic arrays.
We show that the addition of layers can suppress these losses through destructive interference between the layers.
We find that optimized efficiency favors small diffraction-order angles and small interlayer separations.
arXiv Detail & Related papers (2024-02-09T23:57:02Z) - Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - Dissipative transfer of quantum correlations from light to atomic arrays [0.0]
We consider an atomic array illuminated by a paraxial beam of a squeezed-vacuum field.
quantum-squeezing correlations are dissipatively transferred to the array atoms, resulting in an atomic spin-squeezed steady state.
We discuss applications in atomic clocks both in optical and microwave domains.
arXiv Detail & Related papers (2023-11-07T11:22:58Z) - Scalable Heteronuclear Architecture of Neutral Atoms Based on EIT [3.8525292841668546]
We propose a scalable heteronuclear architecture of parallel implementation of CNOT gates in arrays of alkali-metal neutral atoms for quantum information processing.
We numerically optimized the system parameters to achieve the fidelity for parallelly implemented CNOT gates around $mathcalF=95%$ for the experimentally feasible conditions.
arXiv Detail & Related papers (2023-03-29T03:27:09Z) - Tunable directional emission and collective dissipation with quantum
metasurfaces [62.997667081978825]
Subradiant excitations propagate through the atomic array with very long lifetimes.
We demonstrate that one can harness these excitations to obtain tunable directional emission patterns.
We also benchmark how these directional emission patterns translate into collective, anisotropic dissipative couplings.
arXiv Detail & Related papers (2021-07-01T14:26:33Z) - Optimal radial basis for density-based atomic representations [58.720142291102135]
We discuss how to build an adaptive, optimal numerical basis that is chosen to represent most efficiently the structural diversity of the dataset at hand.
For each training dataset, this optimal basis is unique, and can be computed at no additional cost with respect to the primitive basis.
We demonstrate that this construction yields representations that are accurate and computationally efficient.
arXiv Detail & Related papers (2021-05-18T17:57:08Z) - Generation of Photonic Matrix Product States with Rydberg Atomic Arrays [63.62764375279861]
We show how one can deterministically generate photonic matrix product states with high bond and physical dimensions with an atomic array.
We develop a quantum gate and an optimal control approach to universally control the system and analyze the photon retrieval efficiency of atomic arrays.
arXiv Detail & Related papers (2020-11-08T07:59:55Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.