論文の概要: Efficient Feature Extraction and Classification Architecture for MRI-Based Brain Tumor Detection
- arxiv url: http://arxiv.org/abs/2410.22619v1
- Date: Wed, 30 Oct 2024 00:47:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:24:00.594363
- Title: Efficient Feature Extraction and Classification Architecture for MRI-Based Brain Tumor Detection
- Title(参考訳): MRIを用いた脳腫瘍検出のための効率的な特徴抽出と分類手法
- Authors: Plabon Paul, Md. Nazmul Islam, Fazle Rafsani, Pegah Khorasani, Shovito Barua Soumma,
- Abstract要約: 脳MRIは、腫瘍の存在や欠如を明らかにするのに不正確であることが知られている。
本研究では,腫瘍の存在を特定するために,畳み込みニューラルネットワーク(CNN)を訓練した。
CNNモデルの結果、99.17%の精度を示した。
- 参考スコア(独自算出の注目度): 0.23301643766310373
- License:
- Abstract: Uncontrolled cell division in the brain is what gives rise to brain tumors. If the tumor size increases by more than half, there is little hope for the patient's recovery. This emphasizes the need of rapid and precise brain tumor diagnosis. When it comes to analyzing, diagnosing, and planning therapy for brain tumors, MRI imaging plays a crucial role. A brain tumor's development history is crucial information for doctors to have. When it comes to distinguishing between human soft tissues, MRI scans are superior. In order to get reliable classification results from MRI scans quickly, deep learning is one of the most practical methods. Early human illness diagnosis has been demonstrated to be more accurate when deep learning methods are used. In the case of diagnosing a brain tumor, when even a little misdiagnosis might have serious consequences, accuracy is especially important. Disclosure of brain tumors in medical images is still a difficult task. Brain MRIs are notoriously imprecise in revealing the presence or absence of tumors. Using MRI scans of the brain, a Convolutional Neural Network (CNN) was trained to identify the presence of a tumor in this research. Results from the CNN model showed an accuracy of 99.17%. The CNN model's characteristics were also retrieved. In order to evaluate the CNN model's capability for processing images, we applied the features via the following machine learning models: KNN, Logistic regression, SVM, Random Forest, Naive Bayes, and Perception. CNN and machine learning models were also evaluated using the standard metrics of Precision, Recall, Specificity, and F1 score. The significance of the doctor's diagnosis enhanced the accuracy of the CNN model's assistance in identifying the existence of tumor and treating the patient.
- Abstract(参考訳): 脳内の無制御細胞分裂は脳腫瘍を引き起こす。
腫瘍の大きさが半分以上大きくなると、患者の回復の見込みはほとんどない。
これは、迅速かつ正確な脳腫瘍診断の必要性を強調している。
脳腫瘍の解析、診断、計画療法に関しては、MRIが重要な役割を担っている。
脳腫瘍の発生履歴は、医師にとって重要な情報である。
人間の軟組織を区別するという点では、MRIスキャンの方が優れている。
MRIスキャンから信頼性の高い分類結果を得るために、ディープラーニングは最も実践的な方法の1つである。
早期のヒト疾患の診断は、深層学習法を用いるとより正確であることが示されている。
脳腫瘍の診断の場合、小さな誤診でも重大な結果が出る場合、特に正確性が重要である。
医療画像における脳腫瘍の開示は依然として難しい課題である。
脳MRIは、腫瘍の存在や欠如を明らかにするのに不正確であることが知られている。
脳のMRIスキャンを用いて、この研究で腫瘍の存在を特定するために、畳み込みニューラルネットワーク(CNN)を訓練した。
CNNモデルの結果、99.17%の精度を示した。
CNNモデルの特徴も回収された。
画像処理におけるCNNモデルの能力を評価するため,KNN,ロジスティック回帰,SVM,ランダムフォレスト,ネイブベイズ,パーセプションといった機械学習モデルを用いて,これらの特徴を適用した。
CNNと機械学習モデルも、精度、リコール、特異性、F1スコアの標準指標を使用して評価された。
医師の診断の重要性は、腫瘍の存在を同定し、患者を治療する上で、CNNモデルのアシストの精度を高めた。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Comparative Evaluation of Transfer Learning for Classification of Brain
Tumor Using MRI [0.5235143203977018]
脳腫瘍の診断は、コンピュータ支援診断の分野によって大幅に速められている。
本研究では,脳腫瘍を4種類の転移学習法を用いて分類した。
われわれのモデルは、脳がんの3つの異なる形態を表す3064ドルのMRI画像のベンチマークデータセットでテストされた。
論文 参考訳(メタデータ) (2023-09-24T03:46:38Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Video4MRI: An Empirical Study on Brain Magnetic Resonance Image
Analytics with CNN-based Video Classification Frameworks [60.42012344842292]
3次元CNNモデルが磁気共鳴画像(MRI)解析の分野を支配している。
本稿では,アルツハイマー病とパーキンソン病の認識の4つのデータセットを実験に利用した。
効率の面では、ビデオフレームワークは3D-CNNモデルよりも5%から11%、トレーニング可能なパラメータは50%から66%少ない。
論文 参考訳(メタデータ) (2023-02-24T15:26:31Z) - Convolutional XGBoost (C-XGBOOST) Model for Brain Tumor Detection [0.0]
本研究では、畳み込みニューラルネットワーク(CNN)と極勾配増強(XGBoost)を組み合わせた脳腫瘍早期検出モデルを提案する。
C-XGBoostという名前のモデルでは、純粋にCNNよりもモデルの複雑さが低く、トレーニングが容易で、過度に適合する傾向が低い。
また、実際の医用画像分類タスクにおいて一般的な問題である、不均衡データや非構造データを扱うことも可能である。
論文 参考訳(メタデータ) (2023-01-05T22:25:28Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Assistive Diagnostic Tool for Brain Tumor Detection using Computer
Vision [0.0]
このプロジェクトの目的は、脳腫瘍の検出とセグメンテーションのための補助診断ツールを作ることである。
モデルは20のエポックで訓練され、後にテストされた。予測セグメンテーションは、基礎的な真実と90%一致した。
医師は、患者の脳腫瘍のMRI画像をアップロードして、各患者の診断とセグメンテーションの即時結果を受け取ることができる。
論文 参考訳(メタデータ) (2020-11-17T04:58:33Z) - Brain Tumor Classification Using Medial Residual Encoder Layers [9.038707616951795]
がんは世界で2番目に多い死因であり、2018年だけで950万人以上が死亡している。
脳腫瘍は4件のがん死亡のうち1件を数えている。
本稿では,エンコーダブロックを含むディープラーニングに基づくシステムを提案する。
3064 MR画像からなるデータセット上でのこのモデルの実験的評価は、95.98%の精度を示しており、このデータベースに関する以前の研究より優れている。
論文 参考訳(メタデータ) (2020-11-01T21:19:38Z) - Multi-channel MRI Embedding: An EffectiveStrategy for Enhancement of
Human Brain WholeTumor Segmentation [2.869946954477617]
医用画像処理における最も重要な課題の1つは、脳全体の腫瘍のセグメンテーションである。
脳腫瘍は早期に検出された場合、悪性または良性であることが多い。
本研究は, 深層学習に基づく腫瘍セグメント化の結果を改善するため, マルチチャネルMRI埋め込みという効率的な手法を提案する。
論文 参考訳(メタデータ) (2020-09-13T23:44:16Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。