論文の概要: Calibrating Practical Privacy Risks for Differentially Private Machine Learning
- arxiv url: http://arxiv.org/abs/2410.22673v1
- Date: Wed, 30 Oct 2024 03:52:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:28:07.861395
- Title: Calibrating Practical Privacy Risks for Differentially Private Machine Learning
- Title(参考訳): 差分プライベート機械学習のための実践的プライバシリスクの校正
- Authors: Yuechun Gu, Keke Chen,
- Abstract要約: モデルトレーニングにおいて、より柔軟なプライバシ予算設定を可能にするために、攻撃の成功率を下げるアプローチについて検討する。
プライバシに敏感な機能を選択的に抑制することで、アプリケーション固有のデータユーティリティを損なうことなく、低いASR値を達成できることがわかりました。
- 参考スコア(独自算出の注目度): 5.363664265121231
- License:
- Abstract: Differential privacy quantifies privacy through the privacy budget $\epsilon$, yet its practical interpretation is complicated by variations across models and datasets. Recent research on differentially private machine learning and membership inference has highlighted that with the same theoretical $\epsilon$ setting, the likelihood-ratio-based membership inference (LiRA) attacking success rate (ASR) may vary according to specific datasets and models, which might be a better indicator for evaluating real-world privacy risks. Inspired by this practical privacy measure, we study the approaches that can lower the attacking success rate to allow for more flexible privacy budget settings in model training. We find that by selectively suppressing privacy-sensitive features, we can achieve lower ASR values without compromising application-specific data utility. We use the SHAP and LIME model explainer to evaluate feature sensitivities and develop feature-masking strategies. Our findings demonstrate that the LiRA $ASR^M$ on model $M$ can properly indicate the inherent privacy risk of a dataset for modeling, and it's possible to modify datasets to enable the use of larger theoretical $\epsilon$ settings to achieve equivalent practical privacy protection. We have conducted extensive experiments to show the inherent link between ASR and the dataset's privacy risk. By carefully selecting features to mask, we can preserve more data utility with equivalent practical privacy protection and relaxed $\epsilon$ settings. The implementation details are shared online at the provided GitHub URL \url{https://anonymous.4open.science/r/On-sensitive-features-and-empirical-epsilon-lower-bounds-BF67/}.
- Abstract(参考訳): 差分プライバシーはプライバシー予算$\epsilon$を通じてプライバシーを定量化するが、実際の解釈はモデルやデータセットのバリエーションによって複雑である。
差分プライベート機械学習とメンバシップ推論に関する最近の研究は、同じ理論で$\epsilon$設定で、確率比ベースのメンバシップ推論(LiRA)攻撃成功率(ASR)は特定のデータセットやモデルによって異なる可能性があることを強調している。
この実践的なプライバシ尺度にインスパイアされた我々は、モデルトレーニングにおいてより柔軟なプライバシ予算設定を可能にするために、攻撃的な成功率を下げるアプローチについて検討する。
プライバシに敏感な機能を選択的に抑制することで、アプリケーション固有のデータユーティリティを損なうことなく、低いASR値を達成できることがわかりました。
SHAPモデルとLIMEモデルを用いて特徴感度を評価し,特徴マスキング戦略を開発する。
この結果から、LiRA $ASR^M$ on model $M$は、モデリング用のデータセット固有のプライバシリスクを適切に示すことができ、データセットを変更して、より大きな理論的$\epsilon$設定を使用することで、同等の実用的なプライバシ保護を実現することができることがわかった。
我々は、ASRとデータセットのプライバシーリスクの関連性を示す広範な実験を行った。
マスクする機能を慎重に選択することで、実用的なプライバシ保護とリラックスした$\epsilon$設定で、より多くのデータユーティリティを保存できます。
実装の詳細は、提供されたGitHub URL \url{https://anonymous.4open.science/r/On-sensitive-features-and-empirical-epsilon-lower-bounds-BF67/}でオンラインで共有されている。
関連論文リスト
- Share Your Representation Only: Guaranteed Improvement of the
Privacy-Utility Tradeoff in Federated Learning [47.042811490685324]
この情報漏洩のリスクを減らし、最先端の差分プライベートアルゴリズムを使っても、無料ではない。
本稿では,異なるプライバシ保証を持つフェデレーションモデルにおいて,様々な当事者が協調的に洗練する表現学習の目的について考察する。
同じ小さなプライバシ予算の下で、以前の作業よりも大幅にパフォーマンスが向上するのを観察する。
論文 参考訳(メタデータ) (2023-09-11T14:46:55Z) - Epsilon*: Privacy Metric for Machine Learning Models [7.461284823977013]
Epsilon*は、単一のモデルインスタンスのプライバシリスクを、プライバシ緩和戦略の展開前、またはデプロイ後、測定するための新しい指標である。
モデル予測へのブラックボックスアクセスのみを必要とし、トレーニングデータの再サンプリングやモデル再トレーニングを必要とせず、差分プライバシでトレーニングされていないモデルのプライバシリスクを測定するために使用できる。
論文 参考訳(メタデータ) (2023-07-21T00:49:07Z) - Probing the Transition to Dataset-Level Privacy in ML Models Using an
Output-Specific and Data-Resolved Privacy Profile [23.05994842923702]
差分プライバシーメカニズムを用いてデータセットでトレーニングされたモデルが、近隣のデータセットでトレーニングされた結果の分布によってカバーされる範囲を定量化するプライバシー指標について検討する。
プライバシプロファイルは、近隣のディストリビューションで発生する不明瞭性への観察された遷移を、$epsilon$の減少として調査するために使用できることを示す。
論文 参考訳(メタデータ) (2023-06-27T20:39:07Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
本研究では,離散データに対するデータ再構成攻撃について検討し,仮説テストの枠組みの下で解析する。
基礎となるプライベートデータが$M$のセットから値を取ると、ターゲットのプライバシパラメータ$epsilon$が$O(log M)$になる。
論文 参考訳(メタデータ) (2022-10-24T23:50:12Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
しかし、スパースデータセットを共有するという点では、差分プライバシーがプライバシのゴールドスタンダードとして浮上している。
本研究では、スムーズな$k$匿名性(スムーズな$k$匿名性)と、スムーズな$k$匿名性(スムーズな$k$匿名性)を提供する単純な大規模アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-07-13T17:09:25Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Quantifying identifiability to choose and audit $\epsilon$ in
differentially private deep learning [15.294433619347082]
機械学習で差分プライバシーを使用するには、データサイエンティストがプライバシパラメータを$(epsilon,delta)$を選択する必要がある。
私たちは$(epsilon,delta)$を、トレーニングデータセット内のレコードの存在に関する差分プライバシーによって想定される相手のベイジアン後方信念にバインドに変換します。
我々は、データサイエンティストがモデルのトレーニングを監査し、経験的識別可能性スコアと経験的$(epsilon,delta)$を計算することを可能にするこの差分プライバシーの敵対の実装を策定します。
論文 参考訳(メタデータ) (2021-03-04T09:35:58Z) - Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for
Private Learning [74.73901662374921]
差分プライベートモデルは、モデルが多数のトレーニング可能なパラメータを含む場合、ユーティリティを劇的に劣化させる。
偏微分プライベート深層モデルの精度向上のためのアルゴリズムemphGradient Embedding Perturbation (GEP)を提案する。
論文 参考訳(メタデータ) (2021-02-25T04:29:58Z) - On Deep Learning with Label Differential Privacy [54.45348348861426]
ラベルは機密性があり、保護されるべきであるとするマルチクラス分類について検討する。
本稿では,ラベル差分プライバシを用いたディープニューラルネットワークのトレーニングアルゴリズムを提案し,いくつかのデータセットで評価を行う。
論文 参考訳(メタデータ) (2021-02-11T15:09:06Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。