論文の概要: An Iterative Algorithm for Regularized Non-negative Matrix Factorizations
- arxiv url: http://arxiv.org/abs/2410.22698v1
- Date: Wed, 30 Oct 2024 05:12:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:25:57.541679
- Title: An Iterative Algorithm for Regularized Non-negative Matrix Factorizations
- Title(参考訳): 正規化非負行列分解の反復アルゴリズム
- Authors: Steven E. Pav,
- Abstract要約: 私たちはLeeとSungの乗法的更新を、ゼロ値に固執しない追加更新として再放送します。
共役Rパッケージ rnnmf をカクテルのデータベースのランク低下表現を求める問題に適用する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We generalize the non-negative matrix factorization algorithm of Lee and Seung to accept a weighted norm, and to support ridge and Lasso regularization. We recast the Lee and Seung multiplicative update as an additive update which does not get stuck on zero values. We apply the companion R package rnnmf to the problem of finding a reduced rank representation of a database of cocktails.
- Abstract(参考訳): 我々は,Lee と Seung の非負行列分解アルゴリズムを一般化し,重み付きノルムを受け入れるとともに,リッジとラッソ正則化をサポートする。
私たちはLeeとSungの乗法的更新を、ゼロ値に固執しない追加更新として再放送します。
共役Rパッケージ rnnmf をカクテルのデータベースのランク低下表現を求める問題に適用する。
関連論文リスト
- The Inductive Bias of Flatness Regularization for Deep Matrix
Factorization [58.851514333119255]
この研究は、ディープ線形ネットワークにおけるヘッセン解の最小トレースの帰納バイアスを理解するための第一歩となる。
測定値の標準等尺性(RIP)が1より大きいすべての深さについて、ヘッセンのトレースを最小化することは、対応する終端行列パラメータのシャッテン 1-ノルムを最小化するのとほぼ同値であることを示す。
論文 参考訳(メタデータ) (2023-06-22T23:14:57Z) - A fast Multiplicative Updates algorithm for Non-negative Matrix Factorization [2.646309221150203]
本稿では,各サブプロブレムに対してヘッセン行列のより厳密な上界を構築することにより,乗法更新アルゴリズムの改善を提案する。
コンバージェンスはまだ保証されており、我々は実際に合成と実世界の両方のデータセットで、提案したfastMUアルゴリズムが通常の乗算更新アルゴリズムよりも数桁高速であることを示す。
論文 参考訳(メタデータ) (2023-03-31T12:09:36Z) - Continuous Semi-Supervised Nonnegative Matrix Factorization [8.303018940526417]
非負行列分解は、教師なしの方法でコーパス内のトピックを自動的に検出するために用いられる。
この因子化を連続応答変数の回帰と組み合わせることができることを示す。
論文 参考訳(メタデータ) (2022-12-19T21:07:27Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
本研究では,高階グラフ畳み込みからの効率的な学習と,ノード分類のための隣接行列から直接学習する。
得られたモデルが新しいグラフと残留スケーリングパラメータをもたらすことを示す。
提案手法は,非親和性パラメータのノード分類における精度の向上を実証する。
論文 参考訳(メタデータ) (2022-09-12T04:46:55Z) - Matrix Completion via Non-Convex Relaxation and Adaptive Correlation
Learning [90.8576971748142]
閉形式解によって最適化できる新しいサロゲートを開発する。
そこで我々は, 上向きの相関関係を利用して, 適応的相関学習モデルを構築した。
論文 参考訳(メタデータ) (2022-03-04T08:50:50Z) - Low-Rank Updates of Matrix Square Roots [7.832944895330117]
行列平方根と逆平方根演算を考える。
行列に対する低階摂動が与えられたとき、(逆)平方根に対する低階近似補正が存在すると論じる。
次に、その方程式に対する低ランク解をどのように計算するかについて議論する。
論文 参考訳(メタデータ) (2022-01-31T12:05:33Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
我々は弱い教師付き回帰問題を解く。
weakly"の下では、いくつかのトレーニングポイントではラベルが知られ、未知のものもあれば、無作為なノイズの存在やリソースの欠如などの理由によって不確かであることが分かっています。
数値的な節ではモンテカルロモデルを用いて提案手法を人工と実のデータセットに適用した。
論文 参考訳(メタデータ) (2021-04-13T23:21:01Z) - Adversarially-Trained Nonnegative Matrix Factorization [77.34726150561087]
非負行列ファクタリゼーションの逆学習版を検討する。
我々の定式化では、攻撃者は与えられたデータ行列に有界ノルムの任意の行列を追加する。
辞書と係数行列を最適化するために, 逆学習に触発された効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-04-10T13:13:17Z) - A Scalable, Adaptive and Sound Nonconvex Regularizer for Low-rank Matrix
Completion [60.52730146391456]
そこで我々は,適応的かつ音質の高い"核フロベニウスノルム"と呼ばれる新しい非スケーラブルな低ランク正規化器を提案する。
特異値の計算をバイパスし、アルゴリズムによる高速な最適化を可能にする。
既存の行列学習手法では最速でありながら、最先端の回復性能が得られる。
論文 参考訳(メタデータ) (2020-08-14T18:47:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。