論文の概要: FilterViT and DropoutViT: Lightweight Vision Transformer Models for Efficient Attention Mechanisms
- arxiv url: http://arxiv.org/abs/2410.22709v2
- Date: Mon, 04 Nov 2024 14:06:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:47:37.300008
- Title: FilterViT and DropoutViT: Lightweight Vision Transformer Models for Efficient Attention Mechanisms
- Title(参考訳): FilterViTとDropoutViT:効率的な注意機構のための軽量ビジョントランスモデル
- Authors: Bohang Sun,
- Abstract要約: FilterViTは、他のモデルと比較して、効率と精度の両方で大幅に向上する。
また、ピクセル選択のアプローチを利用したDropoutViTを導入し、ロバスト性をさらに強化する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this study, we introduce FilterViT, an enhanced version of MobileViT, which leverages an attention-based mechanism for early-stage downsampling. Traditional QKV operations on high-resolution feature maps are computationally intensive due to the abundance of tokens. To address this, we propose a filter attention mechanism using a convolutional neural network (CNN) to generate an importance mask, focusing attention on key image regions. The method significantly reduces computational complexity while maintaining interpretability, as it highlights essential image areas. Experimental results show that FilterViT achieves substantial gains in both efficiency and accuracy compared to other models. We also introduce DropoutViT, a variant that uses a stochastic approach for pixel selection, further enhancing robustness.
- Abstract(参考訳): 本研究では,早期ダウンサンプリングに注目に基づくメカニズムを活用するMobileViTの強化版であるFilterViTを紹介する。
高分解能特徴写像上の従来のQKV演算は、トークンの多さのために計算集約的である。
これを解決するために,畳み込みニューラルネットワーク(CNN)を用いて重要なマスクを生成し,重要な画像領域に注意を向けるフィルタアテンション機構を提案する。
本手法は,重要な画像領域を強調するため,解釈可能性を維持しながら計算複雑性を著しく低減する。
実験結果から,FilterViTは他のモデルと比較して,効率と精度の両面で有意な向上が得られた。
また、画素選択に確率的アプローチを用いたDropoutViTを導入し、ロバスト性をさらに強化する。
関連論文リスト
- ZipVL: Efficient Large Vision-Language Models with Dynamic Token Sparsification and KV Cache Compression [29.163757099307553]
大型視覚言語モデル(LVLM)のための効率的な推論フレームワークZipVLを提案する。
ZipVLは重要なトークンの動的比割り当て戦略によって計算とメモリのボトルネックを解消する。
実験によると、ZipVLはプリフィルフェーズを2.6$times$で加速し、GPUメモリ使用量を50.0%削減できる。
論文 参考訳(メタデータ) (2024-10-11T07:24:21Z) - ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders [53.3185750528969]
Masked AutoEncoders (MAE)は、堅牢な自己管理フレームワークとして登場した。
データに依存しないColorMAEという手法を導入し、ランダムノイズをフィルタすることで異なる二元マスクパターンを生成する。
ランダムマスキングと比較して,下流タスクにおける戦略の優位性を示す。
論文 参考訳(メタデータ) (2024-07-17T22:04:00Z) - Variance-insensitive and Target-preserving Mask Refinement for
Interactive Image Segmentation [68.16510297109872]
ポイントベースのインタラクティブなイメージセグメンテーションは、セマンティックセグメンテーションや画像編集といったアプリケーションにおけるマスクアノテーションの負担を軽減することができる。
本稿では,ユーザ入力の少ないセグメンテーション品質を向上する新しい手法である可変無感・ターゲット保存マスクリファインメントを提案する。
GrabCut、バークレー、SBD、DAVISデータセットの実験は、インタラクティブな画像セグメンテーションにおける我々の手法の最先端性能を実証している。
論文 参考訳(メタデータ) (2023-12-22T02:31:31Z) - AiluRus: A Scalable ViT Framework for Dense Prediction [95.1313839257891]
視覚変換器 (ViT) は、その優れた性能のため、視覚タスクの一般的なアーキテクチャとして登場した。
本稿では,画像の異なる領域に対して,その重要度に応じて適応分解能を適用することを提案する。
提案手法を3つの異なるデータセット上で評価し,有望な性能を観察する。
論文 参考訳(メタデータ) (2023-11-02T12:48:43Z) - Pixel Adapter: A Graph-Based Post-Processing Approach for Scene Text
Image Super-Resolution [22.60056946339325]
アップサンプリングによる画素歪みに対処するために,グラフアテンションに基づくPixel Adapter Module (PAM)を提案する。
PAMは、各ピクセルが隣人と対話し、機能を更新することで、ローカルな構造情報を効果的にキャプチャする。
提案手法は,従来の認識精度を上回り,高品質な超解像を生成することを実証する。
論文 参考訳(メタデータ) (2023-09-16T08:12:12Z) - Efficient Context Integration through Factorized Pyramidal Learning for
Ultra-Lightweight Semantic Segmentation [1.0499611180329804]
本稿では,FPL(Facterized Pyramidal Learning)モジュールを提案する。
空間ピラミッドを2つのステージに分解し,モジュール内での簡易かつ効率的な特徴融合により,悪名高いチェッカーボード効果を解決する。
FPLモジュールとFIRユニットをベースとしたFPLNetと呼ばれる超軽量リアルタイムネットワークを提案する。
論文 参考訳(メタデータ) (2023-02-23T05:34:51Z) - Skip-Attention: Improving Vision Transformers by Paying Less Attention [55.47058516775423]
視覚計算変換器(ViT)は、すべての層で高価な自己注意操作を使用する。
また,SkipAtを提案する。SkipAtは,先行層から自己注意を再利用して1層以上の注意を近似する手法である。
本稿では,画像の分類と自己教師型学習,ADE20Kのセマンティックセグメンテーション,SIDDの画像デノイング,DAVISのビデオデノナイズにおける手法の有効性を示す。
論文 参考訳(メタデータ) (2023-01-05T18:59:52Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
ビデオオブジェクト検出のための新しい一様SALiencyベースの入力SAmpling技術であるSALISAを提案する。
SALISAは小物体の検出を著しく改善することを示す。
論文 参考訳(メタデータ) (2022-04-05T17:59:51Z) - Low Pass Filter for Anti-aliasing in Temporal Action Localization [15.139834271977913]
本稿では,時間的行動定位法におけるエイリアスの存在を検証する。
高周波帯域の抑制により低域通過フィルタを用いてこの問題を解決する。
実験により、TALにおける低域通過フィルタによるアンチエイリアシングは有利かつ効率的であることが示された。
論文 参考訳(メタデータ) (2021-04-23T03:57:34Z) - Scalable Visual Transformers with Hierarchical Pooling [61.05787583247392]
本稿では,視覚的トークンを徐々にプールしてシーケンス長を縮小する階層的ビジュアルトランスフォーマ(hvt)を提案する。
計算の複雑さを増すことなく、深さ/幅/解像度/パッチサイズの寸法をスケールすることで、大きなメリットをもたらします。
当社のHVTはImageNetとCIFAR-100データセットの競合ベースラインを上回っています。
論文 参考訳(メタデータ) (2021-03-19T03:55:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。