Exact volume-law entangled eigenstates in a large class of spin models
- URL: http://arxiv.org/abs/2410.22773v1
- Date: Wed, 30 Oct 2024 07:41:21 GMT
- Title: Exact volume-law entangled eigenstates in a large class of spin models
- Authors: Sashikanta Mohapatra, Sanjay Moudgalya, Ajit C. Balram,
- Abstract summary: We analytically construct a specific set of volume-law-entangled exact excited eigenstates in a large class of spin Hamiltonians.
We show that all spin chains that satisfy a simple set of conditions host exact volume-law eigenstates in the middle of their spectra.
Our framework also unifies many recent constructions of volume-law entangled eigenstates in the literature.
- Score: 0.0
- License:
- Abstract: Exact solutions for excited states in non-integrable quantum Hamiltonians have revealed novel dynamical phenomena that can occur in quantum many-body systems. This work proposes a method to analytically construct a specific set of volume-law-entangled exact excited eigenstates in a large class of spin Hamiltonians. In particular, we show that all spin chains that satisfy a simple set of conditions host exact volume-law eigenstates in the middle of their spectra. Examples of physically relevant spin chains of this type include the transverse-field Ising model, PXP model, spin-$S$ $XY$ model, and spin-$S$ Kitaev chain. Although these eigenstates are highly atypical in their structure, they are thermal with respect to local observables. Our framework also unifies many recent constructions of volume-law entangled eigenstates in the literature. Finally, we show that a similar construction also generalizes to spin models on graphs in arbitrary dimensions.
Related papers
- Bridging conformal field theory and parton approaches to SU(n)_k chiral spin liquids [48.225436651971805]
We employ the SU(n)_k Wess-Zumino-Witten (WZW) model in conformal field theory to construct lattice wave functions in both one and two dimensions.
In one dimension, these wave functions describe critical spin chains whose universality classes are in one-to-one correspondence with the WZW models used in the construction.
In two dimensions, our constructions yield model wave functions for chiral spin liquids, and we show how to find all topological sectors of them in a systematic way.
arXiv Detail & Related papers (2025-01-16T14:42:00Z) - Scattering Neutrinos, Spin Models, and Permutations [42.642008092347986]
We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
arXiv Detail & Related papers (2024-06-26T18:27:15Z) - All product eigenstates in Heisenberg models from a graphical
construction [0.0]
Large degeneracy based on product eigenstates has been found in spin ladders, Kagome-like lattices, and motif magnetism, connected to spin liquids, anyonic phases, and quantum scars.
We unify these systems by a complete classification of product eigenstates of Heisenberg XXZ Hamiltonians with Dzyaloshinskii-Moriya interaction on general graphs in the form of Kirchhoff rules for spin supercurrent.
arXiv Detail & Related papers (2023-10-19T21:13:04Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Exact many-body scars based on pairs or multimers in a chain of spinless
fermions [0.0]
We construct a 1D model Hamiltonian of spinless fermions for which the spinless analogue of $eta$-pairing states are quantum many-body scars.
These states are excited states and display subvolume entanglement entropy scaling.
arXiv Detail & Related papers (2022-07-15T15:26:23Z) - Multipartite entangled states in dipolar quantum simulators [0.0]
We show that the native Hamiltonian dynamics of state-of-the-art quantum simulation platforms can act as a robust source of multipartite entanglement.
Our results suggest that the native Hamiltonian dynamics of state-of-the-art quantum simulation platforms, such as Rydberg-atom arrays, can act as a robust source of multipartite entanglement.
arXiv Detail & Related papers (2022-05-08T16:23:48Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Robust spin squeezing from the tower of states of $U(1)$-symmetric spin
Hamiltonians [0.0]
We show that Spin squeezing can be generated via the non-linear, entangling evolution of an initially factorized spin state.
Our results connect quantum simulation with quantum metrology by unveiling the squeezing power of a large variety of Hamiltonian dynamics.
arXiv Detail & Related papers (2021-03-12T15:36:50Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Entanglement-spectrum characterization of ground-state nonanalyticities
in coupled excitation-phonon models [0.0]
Small-polaron transitions are analyzed through the prism of the entanglement spectrum of the excitation-phonon system.
The behavior of the entanglement entropy in the vicinity of the critical excitation-phonon coupling strength chiefly originates from one specific entanglement-spectrum eigenvalue.
arXiv Detail & Related papers (2020-01-30T08:41:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.