All product eigenstates in Heisenberg models from a graphical
construction
- URL: http://arxiv.org/abs/2310.13158v1
- Date: Thu, 19 Oct 2023 21:13:04 GMT
- Title: All product eigenstates in Heisenberg models from a graphical
construction
- Authors: Felix Gerken, Ingo Runkel, Christoph Schweigert, Thore Posske
- Abstract summary: Large degeneracy based on product eigenstates has been found in spin ladders, Kagome-like lattices, and motif magnetism, connected to spin liquids, anyonic phases, and quantum scars.
We unify these systems by a complete classification of product eigenstates of Heisenberg XXZ Hamiltonians with Dzyaloshinskii-Moriya interaction on general graphs in the form of Kirchhoff rules for spin supercurrent.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, large degeneracy based on product eigenstates has been found in
spin ladders, Kagome-like lattices, and motif magnetism, connected to spin
liquids, anyonic phases, and quantum scars. We unify these systems by a
complete classification of product eigenstates of Heisenberg XXZ Hamiltonians
with Dzyaloshinskii-Moriya interaction on general graphs in the form of
Kirchhoff rules for spin supercurrent. By this, we construct spin systems with
extensive degree of degeneracy linked to exotic condensates which can be
studied in atomic gases and quantum spin lattices.
Related papers
- Emergent Kitaev materials in synthetic Fermi-Hubbard bilayers [49.1574468325115]
Bond-directional spin-spin interactions in a Fermi-Hubbard bilayer can be realized with ultracold fermions in Raman optical lattices.
We analyze the Fermi-liquid and Mott-insulating phases, highlighting a correspondence between Dirac and Majorana quasi-particles.
Our results establish that cold-atom quantum simulators based on Raman optical lattices can be a playground for extended Kitaev models.
arXiv Detail & Related papers (2025-04-22T10:07:56Z) - Harnessing Chiral Spin States in Molecular Nanomagnets for Quantum Technologies [44.1973928137492]
We show that chiral qubits naturally suppress always-on interactions that can not be switched off in weakly coupled qubits.
Our findings establish spin chirality engineering as a promising strategy for mitigating always-on interaction in entangling two chiral qubits in molecular quantum technologies.
arXiv Detail & Related papers (2025-01-21T08:23:12Z) - Bridging conformal field theory and parton approaches to SU(n)_k chiral spin liquids [48.225436651971805]
We employ the SU(n)_k Wess-Zumino-Witten (WZW) model in conformal field theory to construct lattice wave functions in both one and two dimensions.
In one dimension, these wave functions describe critical spin chains whose universality classes are in one-to-one correspondence with the WZW models used in the construction.
In two dimensions, our constructions yield model wave functions for chiral spin liquids, and we show how to find all topological sectors of them in a systematic way.
arXiv Detail & Related papers (2025-01-16T14:42:00Z) - Efficient Eigenstate Preparation in an Integrable Model with Hilbert Space Fragmentation [42.408991654684876]
We consider the preparation of all the eigenstates of spin chains using quantum circuits.
We showivities of the growth is also achievable for interacting models where the interaction between the particles is sufficiently simple.
arXiv Detail & Related papers (2024-11-22T18:57:08Z) - Exact volume-law entangled eigenstates in a large class of spin models [0.0]
We analytically construct a specific set of volume-law-entangled exact excited eigenstates in a large class of spin Hamiltonians.
We show that all spin chains that satisfy a simple set of conditions host exact volume-law eigenstates in the middle of their spectra.
Our framework also unifies many recent constructions of volume-law entangled eigenstates in the literature.
arXiv Detail & Related papers (2024-10-30T07:41:21Z) - Scattering Neutrinos, Spin Models, and Permutations [42.642008092347986]
We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
arXiv Detail & Related papers (2024-06-26T18:27:15Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Classification and emergence of quantum spin liquids in chiral Rydberg
models [0.0]
We investigate the nature of quantum phases arising in chiral interacting Hamiltonians recently realized in Rydberg atom arrays.
We classify all possible fermionic chiral spin liquids with $mathrmU(1)$ global symmetry using parton construction on the honeycomb lattice.
arXiv Detail & Related papers (2023-03-22T18:00:02Z) - Dynamics of mixed quantum-classical spin systems [0.0]
Mixed quantum-classical spin systems have been proposed in spin chain theory, organic chemistry, and, more recently, spintronics.
Here, we present a fully Hamiltonian theory of quantum-classical spin dynamics that appears to be the first to ensure an entire series of consistency properties.
arXiv Detail & Related papers (2022-10-03T14:53:46Z) - Gauge-theoretic origin of Rydberg quantum spin liquids [0.0]
We introduce an exact relation between an Ising-Higgs lattice gauge theory on the kagome lattice and blockaded models on Ruby lattices.
This relation elucidates the origin of previously observed topological spin liquids by directly linking the latter to a deconfined phase of a solvable gauge theory.
arXiv Detail & Related papers (2022-05-25T18:19:26Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Understanding the propagation of excitations in quantum spin chains with
different kind of interactions [68.8204255655161]
It is shown that the inhomogeneous chains are able to transfer excitations with near perfect fidelity.
It is shown that both designed chains have in common a partially ordered spectrum and well localized eigenvectors.
arXiv Detail & Related papers (2021-12-31T15:09:48Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Quantum Dynamics of Collective Spin States in a Thermal Gas [0.0]
Ensembles of alkali or noble-gas atoms at room temperature are widely applied in quantum optics and metrology.
We present a fully-quantum description of the effect of atomic diffusion in these systems.
arXiv Detail & Related papers (2020-06-07T19:39:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.