論文の概要: Open Turbulent Image Set (OTIS)
- arxiv url: http://arxiv.org/abs/2410.22791v1
- Date: Wed, 30 Oct 2024 08:10:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:27:39.644835
- Title: Open Turbulent Image Set (OTIS)
- Title(参考訳): Open Turbulent Image Set (OTIS)
- Authors: Nicholas B. Ferrante, Jerome Gilles,
- Abstract要約: 乱流大気から得られたいくつかの配列を含むOTISと呼ばれる新しいデータセットについて述べる。
ほぼすべてのシーケンスに対して、アルゴリズムの比較を容易にするため、対応する基盤構造を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Long distance imaging is subject to the impact of the turbulent atmosphere. This results into geometric distortions and some blur effect in the observed frames. Despite the existence of several turbulence mitigation algorithms in the literature, no common dataset exists to objectively evaluate their efficiency. In this paper, we describe a new dataset called OTIS (Open Turbulent Images Set) which contains several sequences (either static or dynamic) acquired through the turbulent atmosphere. For almost all sequences, we provide the corresponding groundtruth in order to make the comparison between algorithms easier. We also discuss possible metrics to perform such comparisons.
- Abstract(参考訳): 長距離イメージングは乱流の大気の影響を受ける。
これにより、観測されたフレームの幾何歪みといくつかのぼやけた効果が生じる。
文献にいくつかの乱流緩和アルゴリズムが存在するにもかかわらず、その効率を客観的に評価するための共通のデータセットは存在しない。
本稿では, 動画像集合(OTIS, Open Turbulent Images Set)と呼ばれる新しいデータセットについて述べる。
ほぼすべてのシーケンスに対して、アルゴリズムの比較を容易にするため、対応する基盤構造を提供する。
また、このような比較を行うためのメトリクスについても論じる。
関連論文リスト
- NeISF: Neural Incident Stokes Field for Geometry and Material Estimation [50.588983686271284]
多視点逆レンダリングは、異なる視点で撮影された一連の画像から形状、材料、照明などのシーンパラメータを推定する問題である。
本稿では,偏光手がかりを用いた曖昧さを低減する多視点逆フレームワークNeISFを提案する。
論文 参考訳(メタデータ) (2023-11-22T06:28:30Z) - Object Detection in Aerial Images in Scarce Data Regimes [0.0]
小さな物体は、より多数の空中画像において、自然画像と空中画像の間の明らかなパフォーマンスギャップの原因となっている。
FSOD法の訓練と評価を改善するスケール適応型ボックス類似度基準を提案する。
また、計量学習と微調整に基づく2つの異なるアプローチによる汎用FSODにも貢献する。
論文 参考訳(メタデータ) (2023-10-16T14:16:47Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
低光画像強調(LLIE)技術は、画像の詳細の保存とコントラストの強化に顕著な進歩をもたらした。
これらのアプローチは、動的ノイズを効率的に緩和し、様々な低照度シナリオを収容する上で、永続的な課題に直面する。
まず,低照度画像の雑音レベルを迅速かつ高精度に推定する方法を提案する。
次に、照明と入力の一般的な制約を満たすために、Learningable Illumination Interpolator (LII) を考案する。
論文 参考訳(メタデータ) (2023-05-17T13:56:48Z) - Single Frame Atmospheric Turbulence Mitigation: A Benchmark Study and A
New Physics-Inspired Transformer Model [82.23276183684001]
本研究では,大気乱流の画像化のための物理インスピレーション付き変圧器モデルを提案する。
提案ネットワークは変圧器ブロックのパワーを利用して動的乱流歪みマップを共同で抽出する。
そこで本研究では,従来の客観的指標と,テキスト認識精度を用いたタスク駆動計測の両方で評価可能な,実世界の乱流データセットを新たに2つ提示する。
論文 参考訳(メタデータ) (2022-07-20T17:09:16Z) - A Novel Image Denoising Algorithm Using Concepts of Quantum Many-Body
Theory [40.29747436872773]
本稿では,量子多体理論に触発された新しい画像認識アルゴリズムを提案する。
パッチ解析に基づき、局所像近傍における類似度尺度は、量子力学における相互作用に似た用語によって定式化される。
本稿では,医療用超音波画像復号法などの現実的な課題に対処する手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T23:34:37Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
グループベース画像復元法は,パッチ間の類似性収集に有効である。
各パッチに対して、検索ウィンドウ内で最もよく似たパッチを見つけ、グループ化する。
提案手法は, 主観的, 客観的両面において, 最先端の復調法よりも優れている。
論文 参考訳(メタデータ) (2020-08-09T15:12:16Z) - Crowdsampling the Plenoptic Function [56.10020793913216]
このようなデータから時間変動照明下での新しいビュー合成手法を提案する。
本稿では,新しいDeepMPI表現について紹介する。
本手法は従来のMPI法と同等のパララックスとビュー依存効果を合成し, 反射率の変化と光の時間変化を同時に補間する。
論文 参考訳(メタデータ) (2020-07-30T02:52:10Z) - Learning to Restore a Single Face Image Degraded by Atmospheric
Turbulence using CNNs [93.72048616001064]
このような条件下で撮影された画像は、幾何学的変形と空間のぼかしの組合せに悩まされる。
乱流劣化顔画像の復元問題に対する深層学習に基づく解法を提案する。
論文 参考訳(メタデータ) (2020-07-16T15:25:08Z) - SAR2SAR: a semi-supervised despeckling algorithm for SAR images [3.9490074068698]
本稿では,自己超越型ディープラーニングアルゴリズムSAR2SARを提案する。
時間的変化の補償と、スペックル統計に適応した損失関数に基づいて、SAR非特異化に適応する戦略を提示する。
提案アルゴリズムの可能性を示すために,実画像における結果について考察する。
論文 参考訳(メタデータ) (2020-06-26T15:07:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。