論文の概要: Less is More: Pre-Training Cross-Lingual Small-Scale Language Models with Cognitively-Plausible Curriculum Learning Strategies
- arxiv url: http://arxiv.org/abs/2410.22886v1
- Date: Wed, 30 Oct 2024 10:31:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:28:53.594932
- Title: Less is More: Pre-Training Cross-Lingual Small-Scale Language Models with Cognitively-Plausible Curriculum Learning Strategies
- Title(参考訳): より少ないもの:認知的に証明可能なカリキュラム学習戦略を用いた言語横断型小規模言語モデルの事前学習
- Authors: Suchir Salhan, Richard Diehl Martinez, Zébulon Goriely, Paula Buttery,
- Abstract要約: よりきめ細かいカリキュラム学習戦略を特定するために言語習得理論を利用できるかを評価する。
我々は、SSLMと取得インスパイアされたキュリキュラを言語横断的に実装するために、4つの言語家族のための年齢順コーパスを作成した。
- 参考スコア(独自算出の注目度): 2.6684726101845
- License:
- Abstract: Curriculum Learning has been a popular strategy to improve the cognitive plausibility of Small-Scale Language Models (SSLMs) in the BabyLM Challenge. However, it has not led to considerable improvements over non-curriculum models. We assess whether theoretical linguistic acquisition theories can be used to specify more fine-grained curriculum learning strategies, creating age-ordered corpora of Child-Directed Speech for four typologically distant language families to implement SSLMs and acquisition-inspired curricula cross-lingually. Comparing the success of three objective curricula (Growing, Inwards and MMM) that precisely replicate the predictions of acquisition theories on a standard SSLM architecture, we find fine-grained acquisition-inspired curricula can outperform non-curriculum baselines and performance benefits of curricula strategies in SSLMs can be derived by specifying fine-grained language-specific curricula that precisely replicate language acquisition theories.
- Abstract(参考訳): カリキュラム学習は、BabyLM Challengeにおける小規模言語モデル(SSLM)の認知的妥当性を向上させるための一般的な戦略である。
しかし、これは非カリキュラムモデルに対する大幅な改善には至っていない。
理論言語習得理論がよりきめ細かいカリキュラム学習戦略の特定に役立てられるかどうかを検証し、4つの言語家族に対して年齢順のコーパスを作成し、SSLMと習得インスパイアされたカリキュラムを言語横断的に実装する。
標準SSLMアーキテクチャ上での獲得理論の予測を正確に再現する3つの目的キュリキュラ(Growing, Inwards, MMM)の成功と比較すると、細粒度獲得にインスパイアされたキュリキュラは、非カリキュラムベースラインを上回り、SSLMsにおけるキュリキュラ戦略の性能上の利点は、言語獲得理論を正確に再現する細粒度言語固有のキュリキュラを指定することによって得られる。
関連論文リスト
- From Babbling to Fluency: Evaluating the Evolution of Language Models in Terms of Human Language Acquisition [6.617999710257379]
本稿では,LMの能力を評価するための3段階のフレームワークを提案する。
言語研究の手法を用いて, LMの生成能力を評価する。
論文 参考訳(メタデータ) (2024-10-17T06:31:49Z) - MoE-CT: A Novel Approach For Large Language Models Training With Resistance To Catastrophic Forgetting [53.77590764277568]
ベースモデルの学習を多言語拡張プロセスから分離する新しいMoE-CTアーキテクチャを提案する。
我々の設計では、元のLLMパラメータを凍結し、高リソース言語のパフォーマンスを保護しますが、様々な言語データセットに基づいてトレーニングされたMoEモジュールは、低リソース言語の習熟度を向上します。
論文 参考訳(メタデータ) (2024-06-25T11:03:45Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
この研究は、大規模言語モデル(LLM)の計画能力を改善するための基礎を築いた。
我々は、古典的な計画ベンチマークと自然言語シナリオの両方を含む包括的なベンチマークスイートを構築した。
本研究は,LLM計画の強化を目的としたマルチショットインコンテキスト学習について検討し,文脈長の増大と計画性能の向上の関係について検討する。
論文 参考訳(メタデータ) (2024-06-18T22:57:06Z) - Bridging the Bosphorus: Advancing Turkish Large Language Models through Strategies for Low-Resource Language Adaptation and Benchmarking [1.3716808114696444]
大規模言語モデル(LLM)は様々な分野において重要になってきており、表現不足の言語における高品質なモデルの緊急性を強調している。
本研究では、データ不足、モデル選択、評価、計算制限など、低リソース言語が直面する固有の課題について検討する。
論文 参考訳(メタデータ) (2024-05-07T21:58:45Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
教師付きファインチューニング(SFT)、教師付きインストラクションチューニング(SIT)、インコンテキストラーニング(ICL)は、3つの代替であり、事実上の標準的アプローチである。
提案手法は,6つの高・低リソース言語,3つの異なるNLUタスク,多種多様な言語とドメインのセットアップを用いて,3つのアプローチを網羅的かつ体系的に比較する。
そこで本研究では,教師あり指導のチューニングが,性能とリソース要件の最良のトレードオフであることを示す。
論文 参考訳(メタデータ) (2024-03-04T10:48:13Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - CLIMB: Curriculum Learning for Infant-inspired Model Building [6.4766496232839685]
本稿では,BabyLM ChallengeのSTRICT-SMALLトラックへのチームの貢献について述べる。
課題は、1000万ワードの比較的小さなトレーニングデータセットを使用して、言語モデルをゼロからトレーニングすることである。
認知に動機づけられたカリキュラム学習の3つの変種を実験し,そのモデルの性能に及ぼす影響を解析した。
論文 参考訳(メタデータ) (2023-11-15T11:48:16Z) - Evaluating Neural Language Models as Cognitive Models of Language
Acquisition [4.779196219827507]
我々は、ニューラルネットワークモデルの構文能力を評価するための最も顕著なベンチマークは、十分に厳密でないかもしれないと論じる。
小規模データモデリングによる子言語習得を訓練すると、LMは単純なベースラインモデルで容易にマッチングできる。
子どもの言語習得に関する実証的研究と、LMをよりよく結びつけるための提案をまとめて締めくくった。
論文 参考訳(メタデータ) (2023-10-31T00:16:17Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
大規模言語モデル(LLM)は画期的な技術として登場し、それらの非並列テキスト生成能力は、基本的な文表現学習タスクへの関心を喚起している。
コーパスを生成するためにLLMの処理を分解するマルチレベルコントラスト文表現学習フレームワークであるMultiCSRを提案する。
実験の結果,MultiCSRはより高度なLCMをChatGPTの性能を超えつつ,ChatGPTに適用することで最先端の成果を得られることがわかった。
論文 参考訳(メタデータ) (2023-10-17T03:21:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。