論文の概要: MoE-CT: A Novel Approach For Large Language Models Training With Resistance To Catastrophic Forgetting
- arxiv url: http://arxiv.org/abs/2407.00875v1
- Date: Tue, 25 Jun 2024 11:03:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-07 13:34:23.954291
- Title: MoE-CT: A Novel Approach For Large Language Models Training With Resistance To Catastrophic Forgetting
- Title(参考訳): MoE-CT:大規模言語モデルのための新しいアプローチ
- Authors: Tianhao Li, Shangjie Li, Binbin Xie, Deyi Xiong, Baosong Yang,
- Abstract要約: ベースモデルの学習を多言語拡張プロセスから分離する新しいMoE-CTアーキテクチャを提案する。
我々の設計では、元のLLMパラメータを凍結し、高リソース言語のパフォーマンスを保護しますが、様々な言語データセットに基づいてトレーニングされたMoEモジュールは、低リソース言語の習熟度を向上します。
- 参考スコア(独自算出の注目度): 53.77590764277568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of large language models (LLMs) has predominantly catered to high-resource languages, leaving a disparity in performance for low-resource languages. Conventional Continual Training (CT) approaches to bridge this gap often undermine a model's original linguistic proficiency when expanding to multilingual contexts. Addressing this issue, we introduce a novel MoE-CT architecture, a paradigm that innovatively separates the base model's learning from the multilingual expansion process. Our design freezes the original LLM parameters, thus safeguarding its performance in high-resource languages, while an appended MoE module, trained on diverse language datasets, augments low-resource language proficiency. Our approach significantly outperforms conventional CT methods, as evidenced by our experiments, which show marked improvements in multilingual benchmarks without sacrificing the model's original language performance. Moreover, our MoE-CT framework demonstrates enhanced resistance to forgetting and superior transfer learning capabilities. By preserving the base model's integrity and focusing on strategic parameter expansion, our methodology advances multilingual language modeling and represents a significant step forward for low-resource language inclusion in LLMs, indicating a fruitful direction for future research in language technologies.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は、主に高リソース言語に影響を及ぼし、低リソース言語のパフォーマンスの相違を残している。
従来型継続訓練(CT)は、このギャップを埋めるために、モデルが多言語的文脈に拡張する際の本来の言語能力を損なうことが多い。
この問題に対処するために,多言語拡張プロセスからベースモデルの学習を革新的に分離するパラダイムである,新しいMoE-CTアーキテクチャを導入する。
我々の設計では、元のLLMパラメータを凍結し、高リソース言語のパフォーマンスを保護しますが、様々な言語データセットに基づいてトレーニングされたMoEモジュールは、低リソース言語の習熟度を向上します。
提案手法は従来のCT法よりも優れており,本実験で実証されたように,モデルの本来の言語性能を犠牲にすることなく,多言語ベンチマークの改善が顕著に示された。
さらに, このMoE-CTフレームワークは, 忘れることに対する耐性が向上し, 伝達学習能力に優れることを示した。
本手法は,基本モデルの整合性を保ち,戦略的パラメータ拡張に注力することにより,多言語言語モデリングを推進し,LLMに低リソース言語を組み込むための重要な一歩であり,将来の言語技術研究の方向性を示すものである。
関連論文リスト
- Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
大規模言語モデルを新しい言語に適応させるには、通常、継続事前訓練(CT)と、教師付き微調整(SFT)が含まれる。
我々は低リソース言語の代替としてモデルマージを提案し、異なる機能を持つモデルを追加トレーニングなしで単一のモデルに組み合わせる。
Llama-2-7Bをベースとした実験により、モデルマージはタスク解決能力の低い低リソース言語に対して、極めて少ないデータを持つシナリオにおいて、CT-then-SFTよりも優れていることが実証された。
論文 参考訳(メタデータ) (2024-07-04T15:14:17Z) - Bridging the Bosphorus: Advancing Turkish Large Language Models through Strategies for Low-Resource Language Adaptation and Benchmarking [1.3716808114696444]
大規模言語モデル(LLM)は様々な分野において重要になってきており、表現不足の言語における高品質なモデルの緊急性を強調している。
本研究では、データ不足、モデル選択、評価、計算制限など、低リソース言語が直面する固有の課題について検討する。
論文 参考訳(メタデータ) (2024-05-07T21:58:45Z) - Tele-FLM Technical Report [96.19923831660266]
52Bのオープンソース多言語大言語モデルであるTele-FLM(別名FLM-2)を紹介する。
安定的で効率的な事前訓練のパラダイムと、事実判断能力の強化が特徴である。
これは、Llama2-70BやDeepSeek-67Bのようなより大きな事前学習FLOPを含む強力なオープンソースモデルに匹敵する。
論文 参考訳(メタデータ) (2024-04-25T14:34:47Z) - Compass: Large Multilingual Language Model for South-east Asia [0.0]
CompassLLMは東南アジアの言語に特化した多言語モデルである。
我々のモデルはインドネシア語のような東南アジアの言語で優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-14T11:48:33Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot
Multilingual Information Retrieval [10.664434993386523]
現在のアプローチは、非英語言語における高品質なラベル付きデータの欠如を回避している。
本稿では,単一の高リソース言語のリッチデータから学習するモジュール型高密度検索モデルを提案する。
論文 参考訳(メタデータ) (2024-02-23T02:21:24Z) - Unsupervised Improvement of Factual Knowledge in Language Models [4.5788796239850225]
マスケッド言語モデリングは、大規模言語モデルの事前訓練において重要な役割を果たす。
本稿では,様々な知識集約型タスクにおいて,言語モデルの性能を向上させる方法として,事前学習に影響を与えるアプローチを提案する。
論文 参考訳(メタデータ) (2023-04-04T07:37:06Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z) - Learning Multilingual Representation for Natural Language Understanding
with Enhanced Cross-Lingual Supervision [42.724921817550516]
そこで本稿では,MAの代替として,DA(Decomposed attention)というネットワークを提案する。
DAは言語内注意(IA)と言語間注意(CA)から構成されており、それぞれ言語内および言語間監督をモデル化している。
様々な言語間自然言語理解タスクの実験により、提案したアーキテクチャと学習戦略がモデルの言語間移動性を大幅に改善することが示された。
論文 参考訳(メタデータ) (2021-06-09T16:12:13Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。