KALAM: toolKit for Automating high-Level synthesis of Analog computing systeMs
- URL: http://arxiv.org/abs/2410.22946v1
- Date: Wed, 30 Oct 2024 12:04:22 GMT
- Title: KALAM: toolKit for Automating high-Level synthesis of Analog computing systeMs
- Authors: Ankita Nandi, Krishil Gandhi, Mahendra Pratap Singh, Shantanu Chakrabartty, Chetan Singh Thakur,
- Abstract summary: This paper introduces KALAM, which leverages factor graphs as the foundational paradigm for MP-based analog computing systems.
Using Python scripting language, the KALAM automation flow translates an input factor graph to its equivalent SPICE-compatible circuit netlist.
We demonstrate KALAM's versatility for tasks such as Bayesian inference, Low-Density Parity Check (LDPC) decoding, and Artificial Neural Networks (ANN)
- Score: 5.090653251547252
- License:
- Abstract: Diverse computing paradigms have emerged to meet the growing needs for intelligent energy-efficient systems. The Margin Propagation (MP) framework, being one such initiative in the analog computing domain, stands out due to its scalability across biasing conditions, temperatures, and diminishing process technology nodes. However, the lack of digital-like automation tools for designing analog systems (including that of MP analog) hinders their adoption for designing large systems. The inherent scalability and modularity of MP systems present a unique opportunity in this regard. This paper introduces KALAM (toolKit for Automating high-Level synthesis of Analog computing systeMs), which leverages factor graphs as the foundational paradigm for synthesizing MP-based analog computing systems. Factor graphs are the basis of various signal processing tasks and, when coupled with MP, can be used to design scalable and energy-efficient analog signal processors. Using Python scripting language, the KALAM automation flow translates an input factor graph to its equivalent SPICE-compatible circuit netlist that can be used to validate the intended functionality. KALAM also allows the integration of design optimization strategies such as precision tuning, variable elimination, and mathematical simplification. We demonstrate KALAM's versatility for tasks such as Bayesian inference, Low-Density Parity Check (LDPC) decoding, and Artificial Neural Networks (ANN). Simulation results of the netlists align closely with software implementations, affirming the efficacy of our proposed automation tool.
Related papers
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) has become one of the most prevailing fundamental backbone networks in the computer vision community.
We propose a novel non-uniform quantizer, dubbed the Adaptive Logarithm AdaLog (AdaLog) quantizer.
arXiv Detail & Related papers (2024-07-17T18:38:48Z) - Latency optimized Deep Neural Networks (DNNs): An Artificial Intelligence approach at the Edge using Multiprocessor System on Chip (MPSoC) [1.949471382288103]
Edge computing (AI at Edge) in mobile devices is one of the optimized approaches for addressing this requirement.
In this work, the possibilities and challenges of implementing a low-latency and power-optimized smart mobile system are examined.
Various performance aspects and implementation feasibilities of Neural Networks (NNs) on both embedded FPGA edge devices are discussed.
arXiv Detail & Related papers (2024-07-16T11:51:41Z) - MATADOR: Automated System-on-Chip Tsetlin Machine Design Generation for Edge Applications [0.2663045001864042]
This paper presents MATADOR, an automated-to-silicon tool with GUI interface capable of optimized accelerator design for inference at the edge.
It offers automation of the full development pipeline: model training, system level design generation, design verification and deployment.
MATADOR accelerator designs are shown to be up to 13.4x faster, up to 7x more resource frugal and up to 2x more power efficient when compared to state-of-the-art Quantized and Binary Deep Neural Network implementations.
arXiv Detail & Related papers (2024-03-03T10:31:46Z) - Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing [56.61654656648898]
We propose a framework for a quantum computing-enhanced service ecosystem for simulation in manufacturing.
We analyse two high-value use cases with the aim of a quantitative evaluation of these new computing paradigms for industrially-relevant settings.
arXiv Detail & Related papers (2024-01-19T11:04:14Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AI models present unprecedented challenges to energy consumption and environmental sustainability.
One promising solution is to revisit analogue computing, a technique that predates digital computing.
Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning.
arXiv Detail & Related papers (2023-11-13T08:59:01Z) - A Josephson Parametric Oscillator-Based Ising Machine [5.680611147657014]
This study introduces a Josephson parametric oscillator (JPO)-based tile structure, serving as a fundamental unit for scalable superconductor-based Ising machines.
The proposed machine can operate at frequencies of 7.5GHz while consuming significantly less power (by three orders of magnitude) than CMOS-based systems.
arXiv Detail & Related papers (2023-09-06T23:56:30Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Theory and Implementation of Process and Temperature Scalable
Shape-based CMOS Analog Circuits [6.548257506132353]
This work proposes a novel analog computing framework for designing an analog ML processor similar to that of a digital design.
At the core of our work lies shape-based analog computing (S-AC)
S-AC paradigm also allows the user to trade off computational precision with silicon circuit area and power.
arXiv Detail & Related papers (2022-05-11T17:46:01Z) - Software tool-set for automated quantum system identification and device
bring up [0.0]
We present a software tool-set which combines the theoretical, optimal control view of quantum devices with the practical operation and characterization tasks.
We perform model-based simulations to create control schemes, calibrate these controls in a closed-loop with the device.
Finally, we improve the system model through minimization of the mismatch between simulation and experiment, resulting in a digital twin of the device.
arXiv Detail & Related papers (2022-05-10T12:06:53Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.