Automated Image-Based Identification and Consistent Classification of Fire Patterns with Quantitative Shape Analysis and Spatial Location Identification
- URL: http://arxiv.org/abs/2410.23105v1
- Date: Wed, 30 Oct 2024 15:15:41 GMT
- Title: Automated Image-Based Identification and Consistent Classification of Fire Patterns with Quantitative Shape Analysis and Spatial Location Identification
- Authors: Pengkun Liu, Shuna Ni, Stanislav I. Stoliarov, Pingbo Tang,
- Abstract summary: Fire patterns, consisting of fire effects that offer insights into fire behavior and origin, are traditionally classified based on investigators' visual observations.
This study proposes a framework for quantitative fire pattern classification to support fire investigators, aiming for consistency and accuracy.
The framework's classification results achieve 93% precision on synthetic data and 83% on real fire patterns.
- Score: 1.799933345199395
- License:
- Abstract: Fire patterns, consisting of fire effects that offer insights into fire behavior and origin, are traditionally classified based on investigators' visual observations, leading to subjective interpretations. This study proposes a framework for quantitative fire pattern classification to support fire investigators, aiming for consistency and accuracy. The framework integrates four components. First, it leverages human-computer interaction to extract fire patterns from surfaces, combining investigator expertise with computational analysis. Second, it employs an aspect ratio-based random forest model to classify fire pattern shapes. Third, fire scene point cloud segmentation enables precise identification of fire-affected areas and the mapping of 2D fire patterns to 3D scenes. Lastly, spatial relationships between fire patterns and indoor elements support an interpretation of the fire scene. These components provide a method for fire pattern analysis that synthesizes qualitative and quantitative data. The framework's classification results achieve 93% precision on synthetic data and 83% on real fire patterns.
Related papers
- Fire Dynamic Vision: Image Segmentation and Tracking for Multi-Scale Fire and Plume Behavior [0.0]
Wildfires highlight the need for accurate fire and plume spread models.
We introduce an approach that effectively isolates and tracks fire and plume behavior across various spatial and temporal scales.
Our method combines image segmentation and graph theory to delineate fire fronts and plume boundaries.
arXiv Detail & Related papers (2024-08-16T19:25:19Z) - FlameFinder: Illuminating Obscured Fire through Smoke with Attentive Deep Metric Learning [11.218765140036254]
FlameFinder is designed to accurately detect flames, even when obscured by smoke, using thermal images from firefighter drones during wildfire monitoring.
Traditional RGB cameras struggle in such conditions, but thermal cameras can capture smoke-obscured flame features.
To address this issue, FlameFinder utilizes paired thermal-RGB images for training. By learning latent flame features from smoke-free samples, the model becomes less biased towards relative thermal gradients.
arXiv Detail & Related papers (2024-04-09T23:24:19Z) - Generative Algorithms for Fusion of Physics-Based Wildfire Spread Models
with Satellite Data for Initializing Wildfire Forecasts [0.0]
Recent progress in using satellites to detect fire locations provides the opportunity to use measurements to improve fire spread forecasts.
This work develops a method for inferring the history of a wildfire from satellite measurements.
arXiv Detail & Related papers (2023-09-05T23:24:34Z) - Distinctive Self-Similar Object Detection [0.8488455943441636]
We propose that the distinctive fractal feature of self-similar in fire and smoke can relieve us from struggling with their various shapes.
We design a semi-supervised method that use Hausdorff distance to describe the resemblance between instances.
Our experiments have been conducted on publicly available fire and smoke detection datasets.
arXiv Detail & Related papers (2022-11-20T15:15:57Z) - Active Gaze Control for Foveal Scene Exploration [124.11737060344052]
We propose a methodology to emulate how humans and robots with foveal cameras would explore a scene.
The proposed method achieves an increase in detection F1-score of 2-3 percentage points for the same number of gaze shifts.
arXiv Detail & Related papers (2022-08-24T14:59:28Z) - Assimilation of Satellite Active Fires Data [0.0]
The aim of this thesis is to develop techniques to help combat the impacts of wildfires by improving wildfire modeling capabilities.
In particular, we develop a method for constructing the history of a fire, a new technique for assimilating wildfire data, and a method for modifying the behavior of a modeled fire.
arXiv Detail & Related papers (2022-04-01T20:11:28Z) - Attention on Classification for Fire Segmentation [82.75113406937194]
We propose a Convolutional Neural Network (CNN) for joint classification and segmentation of fire in images.
We use a spatial self-attention mechanism to capture long-range dependency between pixels, and a new channel attention module which uses the classification probability as an attention weight.
arXiv Detail & Related papers (2021-11-04T19:52:49Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - From Synthetic to Real: Image Dehazing Collaborating with Unlabeled Real
Data [58.50411487497146]
We propose a novel image dehazing framework collaborating with unlabeled real data.
First, we develop a disentangled image dehazing network (DID-Net), which disentangles the feature representations into three component maps.
Then a disentangled-consistency mean-teacher network (DMT-Net) is employed to collaborate unlabeled real data for boosting single image dehazing.
arXiv Detail & Related papers (2021-08-06T04:00:28Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
We present a new topology-adapting deep graph learning approach for accurate anatomical facial and medical landmark detection.
The proposed method constructs graph signals leveraging both local image features and global shape features.
Experiments are conducted on three public facial image datasets (WFLW, 300W, and COFW-68) as well as three real-world X-ray medical datasets (Cephalometric (public), Hand and Pelvis)
arXiv Detail & Related papers (2020-04-17T11:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.