A Powerful Random Forest Featuring Linear Extensions (RaFFLE)
- URL: http://arxiv.org/abs/2502.10185v1
- Date: Fri, 14 Feb 2025 14:22:51 GMT
- Title: A Powerful Random Forest Featuring Linear Extensions (RaFFLE)
- Authors: Jakob Raymaekers, Peter J. Rousseeuw, Thomas Servotte, Tim Verdonck, Ruicong Yao,
- Abstract summary: RaFFLE is a novel framework that integrates PILOT trees as base learners within a random forest ensemble.
PILOT trees combine the computational efficiency of traditional decision trees with the flexibility of linear model trees.
RaFFLE proves to be a versatile tool for tackling a wide variety of regression problems.
- Score: 1.2233362977312945
- License:
- Abstract: Random forests are widely used in regression. However, the decision trees used as base learners are poor approximators of linear relationships. To address this limitation we propose RaFFLE (Random Forest Featuring Linear Extensions), a novel framework that integrates the recently developed PILOT trees (Piecewise Linear Organic Trees) as base learners within a random forest ensemble. PILOT trees combine the computational efficiency of traditional decision trees with the flexibility of linear model trees. To ensure sufficient diversity of the individual trees, we introduce an adjustable regularization parameter and use node-level feature sampling. These modifications improve the accuracy of the forest. We establish theoretical guarantees for the consistency of RaFFLE under weak conditions, and its faster convergence when the data are generated by a linear model. Empirical evaluations on 136 regression datasets demonstrate that RaFFLE outperforms the classical CART and random forest methods, the regularized linear methods Lasso and Ridge, and the state-of-the-art XGBoost algorithm, across both linear and nonlinear datasets. By balancing predictive accuracy and computational efficiency, RaFFLE proves to be a versatile tool for tackling a wide variety of regression problems.
Related papers
- Soft regression trees: a model variant and a decomposition training algorithm [0.24578723416255752]
We propose a new variant of soft multivariate regression trees (SRTs) where, for every input vector, the prediction is defined as a linear regression associated to a single leaf node.
SRTs exhibit the conditional computational property, i.e., each prediction depends on a small number of nodes.
Experiments on 15 wellknown datasets indicate that our SRTs and decomposition algorithm yield higher accuracy and robustness compared with traditional soft regression trees.
arXiv Detail & Related papers (2025-01-10T13:06:36Z) - Learning Deep Tree-based Retriever for Efficient Recommendation: Theory and Method [76.31185707649227]
We propose a Deep Tree-based Retriever (DTR) for efficient recommendation.
DTR frames the training task as a softmax-based multi-class classification over tree nodes at the same level.
To mitigate the suboptimality induced by the labeling of non-leaf nodes, we propose a rectification method for the loss function.
arXiv Detail & Related papers (2024-08-21T05:09:53Z) - Forecasting with Hyper-Trees [50.72190208487953]
Hyper-Trees are designed to learn the parameters of time series models.
By relating the parameters of a target time series model to features, Hyper-Trees also address the issue of parameter non-stationarity.
In this novel approach, the trees first generate informative representations from the input features, which a shallow network then maps to the target model parameters.
arXiv Detail & Related papers (2024-05-13T15:22:15Z) - Adaptive Split Balancing for Optimal Random Forest [8.916614661563893]
We propose a new random forest algorithm that constructs the trees using a novel adaptive split-balancing method.
Our method achieves optimality in simple, smooth scenarios while adaptively learning the tree structure from the data.
arXiv Detail & Related papers (2024-02-17T09:10:40Z) - Heterogeneous Oblique Double Random Forest [1.2599533416395767]
The performance of oblique decision trees depends on the way oblique hyperplanes are generate and the data used for the generation of those hyperplanes.
The proposed model employs several linear classifiers at each non-leaf node on the bootstrapped data and splits the original data based on the optimal linear classifier.
The experimental analysis indicates that the performance of the introduced heterogeneous double random forest is comparatively better than the baseline models.
arXiv Detail & Related papers (2023-04-13T19:14:23Z) - Distributional Adaptive Soft Regression Trees [0.0]
This article proposes a new type of a distributional regression tree using a multivariate soft split rule.
One great advantage of the soft split is that smooth high-dimensional functions can be estimated with only one tree.
We show by means of extensive simulation studies that the algorithm has excellent properties and outperforms various benchmark methods.
arXiv Detail & Related papers (2022-10-19T08:59:02Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - A cautionary tale on fitting decision trees to data from additive
models: generalization lower bounds [9.546094657606178]
We study the generalization performance of decision trees with respect to different generative regression models.
This allows us to elicit their inductive bias, that is, the assumptions the algorithms make (or do not make) to generalize to new data.
We prove a sharp squared error generalization lower bound for a large class of decision tree algorithms fitted to sparse additive models.
arXiv Detail & Related papers (2021-10-18T21:22:40Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - Rethinking Learnable Tree Filter for Generic Feature Transform [71.77463476808585]
Learnable Tree Filter presents a remarkable approach to model structure-preserving relations for semantic segmentation.
To relax the geometric constraint, we give the analysis by reformulating it as a Markov Random Field and introduce a learnable unary term.
For semantic segmentation, we achieve leading performance (82.1% mIoU) on the Cityscapes benchmark without bells-and-whistles.
arXiv Detail & Related papers (2020-12-07T07:16:47Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.