On the Validity of Traditional Vulnerability Scoring Systems for Adversarial Attacks against LLMs
- URL: http://arxiv.org/abs/2412.20087v1
- Date: Sat, 28 Dec 2024 09:08:37 GMT
- Title: On the Validity of Traditional Vulnerability Scoring Systems for Adversarial Attacks against LLMs
- Authors: Atmane Ayoub Mansour Bahar, Ahmad Samer Wazan,
- Abstract summary: The study explores the influence of both general and specific metric factors in determining vulnerability scores.
The attacks, sourced from various research papers, and obtained through online databases, were evaluated using multiple vulnerability metrics.
- Score: 0.0
- License:
- Abstract: This research investigates the effectiveness of established vulnerability metrics, such as the Common Vulnerability Scoring System (CVSS), in evaluating attacks against Large Language Models (LLMs), with a focus on Adversarial Attacks (AAs). The study explores the influence of both general and specific metric factors in determining vulnerability scores, providing new perspectives on potential enhancements to these metrics. This study adopts a quantitative approach, calculating and comparing the coefficient of variation of vulnerability scores across 56 adversarial attacks on LLMs. The attacks, sourced from various research papers, and obtained through online databases, were evaluated using multiple vulnerability metrics. Scores were determined by averaging the values assessed by three distinct LLMs. The results indicate that existing scoring-systems yield vulnerability scores with minimal variation across different attacks, suggesting that many of the metric factors are inadequate for assessing adversarial attacks on LLMs. This is particularly true for context-specific factors or those with predefined value sets, such as those in CVSS. These findings support the hypothesis that current vulnerability metrics, especially those with rigid values, are limited in evaluating AAs on LLMs, highlighting the need for the development of more flexible, generalized metrics tailored to such attacks. This research offers a fresh analysis of the effectiveness and applicability of established vulnerability metrics, particularly in the context of Adversarial Attacks on Large Language Models, both of which have gained significant attention in recent years. Through extensive testing and calculations, the study underscores the limitations of these metrics and opens up new avenues for improving and refining vulnerability assessment frameworks specifically tailored for LLMs.
Related papers
- Systematically Analyzing Prompt Injection Vulnerabilities in Diverse LLM Architectures [5.062846614331549]
This study systematically analyzes the vulnerability of 36 large language models (LLMs) to various prompt injection attacks.
Across 144 prompt injection tests, we observed a strong correlation between model parameters and vulnerability.
arXiv Detail & Related papers (2024-10-28T18:55:21Z) - Securing Large Language Models: Addressing Bias, Misinformation, and Prompt Attacks [12.893445918647842]
Large Language Models (LLMs) demonstrate impressive capabilities across various fields, yet their increasing use raises critical security concerns.
This article reviews recent literature addressing key issues in LLM security, with a focus on accuracy, bias, content detection, and vulnerability to attacks.
arXiv Detail & Related papers (2024-09-12T14:42:08Z) - Investigating Coverage Criteria in Large Language Models: An In-Depth Study Through Jailbreak Attacks [10.909463767558023]
We propose an innovative approach for the real-time detection of jailbreak attacks by utilizing neural activation features.
Our method holds promise for future systems integrating LLMs, offering robust real-time detection capabilities.
arXiv Detail & Related papers (2024-08-27T17:14:21Z) - Characterizing and Evaluating the Reliability of LLMs against Jailbreak Attacks [23.782566331783134]
We focus on 10 cutting-edge jailbreak strategies across three categories, 1525 questions from 61 specific harmful categories, and 13 popular LLMs.
We adopt multi-dimensional metrics such as Attack Success Rate (ASR), Toxicity Score, Fluency, Token Length, and Grammatical Errors to thoroughly assess the LLMs' outputs under jailbreak.
We explore the relationships among the models, attack strategies, and types of harmful content, as well as the correlations between the evaluation metrics, which proves the validity of our multifaceted evaluation framework.
arXiv Detail & Related papers (2024-08-18T01:58:03Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) are used to automate decision-making tasks.
In this paper, we evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.
We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types.
These benchmarks allow us to isolate the ability of LLMs to accurately predict changes resulting from their ability to memorize facts or find other shortcuts.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs.
Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods.
This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique.
arXiv Detail & Related papers (2024-03-22T14:47:35Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context learning (ICL) has been recognized for its innovative ability to adapt to new tasks.
This paper delves into the critical issue of ICL's susceptibility to data poisoning attacks.
We introduce ICLPoison, a specialized attacking framework conceived to exploit the learning mechanisms of ICL.
arXiv Detail & Related papers (2024-02-03T14:20:20Z) - A Novel Evaluation Framework for Assessing Resilience Against Prompt Injection Attacks in Large Language Models [0.0]
This study introduces a novel framework for quantifying the resilience of applications.
The framework incorporates innovative techniques designed to ensure representativeness, interpretability, and robustness.
Results revealed that Llama2, the newer model exhibited higher resilience compared to ChatGLM.
arXiv Detail & Related papers (2024-01-02T02:06:48Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.
Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.
We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - Defending Pre-trained Language Models as Few-shot Learners against
Backdoor Attacks [72.03945355787776]
We advocate MDP, a lightweight, pluggable, and effective defense for PLMs as few-shot learners.
We show analytically that MDP creates an interesting dilemma for the attacker to choose between attack effectiveness and detection evasiveness.
arXiv Detail & Related papers (2023-09-23T04:41:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.