Moral Agency in Silico: Exploring Free Will in Large Language Models
- URL: http://arxiv.org/abs/2410.23310v1
- Date: Mon, 28 Oct 2024 20:48:14 GMT
- Title: Moral Agency in Silico: Exploring Free Will in Large Language Models
- Authors: Morgan S. Porter,
- Abstract summary: This study investigates the potential of deterministic systems to exhibit the functional capacities of moral agency and compatibilist free will.
We develop a functional definition of free will grounded in Dennett's compatibilist framework.
Results challenge traditional views on the necessity of consciousness for moral responsibility.
- Score: 0.0
- License:
- Abstract: This study investigates the potential of deterministic systems, specifically large language models (LLMs), to exhibit the functional capacities of moral agency and compatibilist free will. We develop a functional definition of free will grounded in Dennett's compatibilist framework, building on an interdisciplinary theoretical foundation that integrates Shannon's information theory, Dennett's compatibilism, and Floridi's philosophy of information. This framework emphasizes the importance of reason-responsiveness and value alignment in determining moral responsibility rather than requiring metaphysical libertarian free will. Shannon's theory highlights the role of processing complex information in enabling adaptive decision-making, while Floridi's philosophy reconciles these perspectives by conceptualizing agency as a spectrum, allowing for a graduated view of moral status based on a system's complexity and responsiveness. Our analysis of LLMs' decision-making in moral dilemmas demonstrates their capacity for rational deliberation and their ability to adjust choices in response to new information and identified inconsistencies. Thus, they exhibit features of a moral agency that align with our functional definition of free will. These results challenge traditional views on the necessity of consciousness for moral responsibility, suggesting that systems with self-referential reasoning capacities can instantiate degrees of free will and moral reasoning in artificial and biological contexts. This study proposes a parsimonious framework for understanding free will as a spectrum that spans artificial and biological systems, laying the groundwork for further interdisciplinary research on agency and ethics in the artificial intelligence era.
Related papers
- Agency Is Frame-Dependent [94.91580596320331]
Agency is a system's capacity to steer outcomes toward a goal.
We argue that agency is fundamentally frame-dependent.
We conclude that any basic science of agency requires frame-dependence.
arXiv Detail & Related papers (2025-02-06T08:34:57Z) - Delegating Responsibilities to Intelligent Autonomous Systems: Challenges and Benefits [1.7205106391379026]
As AI systems operate with autonomy and adaptability, the traditional boundaries of moral responsibility in techno-social systems are being challenged.
This paper explores the evolving discourse on the delegation of responsibilities to intelligent autonomous agents and the ethical implications of such practices.
arXiv Detail & Related papers (2024-11-06T18:40:38Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Hybrid Approaches for Moral Value Alignment in AI Agents: a Manifesto [3.7414804164475983]
Increasing interest in ensuring the safety of next-generation Artificial Intelligence (AI) systems calls for novel approaches to embedding morality into autonomous agents.
We provide a systematization of existing approaches to the problem of introducing morality in machines - modelled as a continuum.
We argue that more hybrid solutions are needed to create adaptable and robust, yet controllable and interpretable agentic systems.
arXiv Detail & Related papers (2023-12-04T11:46:34Z) - Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories? [78.3738172874685]
Making moral judgments is an essential step toward developing ethical AI systems.
Prevalent approaches are mostly implemented in a bottom-up manner, which uses a large set of annotated data to train models based on crowd-sourced opinions about morality.
This work proposes a flexible top-down framework to steer (Large) Language Models (LMs) to perform moral reasoning with well-established moral theories from interdisciplinary research.
arXiv Detail & Related papers (2023-08-29T15:57:32Z) - Modeling Moral Choices in Social Dilemmas with Multi-Agent Reinforcement
Learning [4.2050490361120465]
A bottom-up learning approach may be more appropriate for studying and developing ethical behavior in AI agents.
We present a systematic analysis of the choices made by intrinsically-motivated RL agents whose rewards are based on moral theories.
We analyze the impact of different types of morality on the emergence of cooperation, defection or exploitation.
arXiv Detail & Related papers (2023-01-20T09:36:42Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
We study interpretability of compact neural policies through the lens of disentangled representation.
We leverage decision trees to obtain factors of variation for disentanglement in robot learning.
We introduce interpretability metrics that measure disentanglement of learned neural dynamics.
arXiv Detail & Related papers (2022-10-13T01:10:41Z) - When to Make Exceptions: Exploring Language Models as Accounts of Human
Moral Judgment [96.77970239683475]
AI systems need to be able to understand, interpret and predict human moral judgments and decisions.
A central challenge for AI safety is capturing the flexibility of the human moral mind.
We present a novel challenge set consisting of rule-breaking question answering.
arXiv Detail & Related papers (2022-10-04T09:04:27Z) - Normative Epistemology for Lethal Autonomous Weapons Systems [0.0]
This chapter discusses higher-order design principles to guide the design, evaluation, deployment, and iteration of Lethal Autonomous Weapons Systems.
Epistemic models consider the role of accuracy, likelihoods, beliefs, competencies, capabilities, context, and luck in the justification of actions and attribution of knowledge.
arXiv Detail & Related papers (2021-10-25T13:13:42Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.