Untrained Filtering with Trained Focusing for Superior Quantum Architecture Search
- URL: http://arxiv.org/abs/2410.23560v2
- Date: Mon, 11 Nov 2024 07:50:31 GMT
- Title: Untrained Filtering with Trained Focusing for Superior Quantum Architecture Search
- Authors: Lian-Hui Yu, Xiao-Yu Li, Geng Chen, Qin-Sheng Zhu, Hui Li, Guo-Wu Yang,
- Abstract summary: Quantum architecture search (QAS) represents a fundamental challenge in quantum machine learning.
We decompose the search process into dynamic alternating phases of coarse and fine-grained knowledge learning.
QUEST-A develops an evolutionary mechanism with knowledge accumulation and reuse to enhance multi-level knowledge transfer.
- Score: 14.288836269941207
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum architecture search (QAS) represents a fundamental challenge in quantum machine learning. Unlike previous methods that treat it as a static search process, from a perspective on QAS as an item retrieval task in vast search space, we decompose the search process into dynamic alternating phases of coarse and fine-grained knowledge learning. We propose quantum untrained-explored synergistic trained architecture (QUEST-A),a framework through coarse-grained untrained filtering for rapid search space reduction and fine-grained trained focusing for precise space refinement in progressive QAS. QUEST-A develops an evolutionary mechanism with knowledge accumulation and reuse to enhance multi-level knowledge transfer in architecture searching. Experiments demonstrate QUEST-A's superiority over existing methods: enhancing model expressivity in signal representation, maintaining high performance across varying complexities in image classification, and achieving order-of-magnitude precision improvements in variational quantum eigensolver tasks, providing a transferable methodology for QAS.
Related papers
- Preventing Local Pitfalls in Vector Quantization via Optimal Transport [77.15924044466976]
We introduce OptVQ, a novel vector quantization method that employs the Sinkhorn algorithm to optimize the optimal transport problem.
Our experiments on image reconstruction tasks demonstrate that OptVQ achieves 100% codebook utilization and surpasses current state-of-the-art VQNs in reconstruction quality.
arXiv Detail & Related papers (2024-12-19T18:58:14Z) - Quantum Machine Learning Architecture Search via Deep Reinforcement Learning [8.546707309430593]
We introduce deep reinforcement learning to explore proficient QML model architectures tailored for supervised learning tasks.
Our methodology involves training an RL agent to devise policies that facilitate the discovery of QML models without predetermined ansatz.
Our proposed method successfully identifies VQC architectures capable of achieving high classification accuracy while minimizing gate depth.
arXiv Detail & Related papers (2024-07-29T16:20:51Z) - Qubit-Wise Architecture Search Method for Variational Quantum Circuits [11.790545710021593]
We propose a novel qubit-wise architec-ture search (QWAS) method, which progres-sively search one-qubit configuration per stage.
Our proposed method can balance the exploration and exploitation of cir-cuit performance and size in some real-world tasks, such as MNIST, Fashion and MOSI.
arXiv Detail & Related papers (2024-03-07T07:08:57Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Architecture Search with Unsupervised Representation Learning [24.698519892763283]
Unsupervised representation learning presents new opportunities for advancing Quantum Architecture Search (QAS)
QAS is designed to optimize quantum circuits for Variational Quantum Algorithms (VQAs)
arXiv Detail & Related papers (2024-01-21T19:53:17Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Evolutionary Quantum Architecture Search for Parametrized Quantum
Circuits [7.298440208725654]
We introduce EQAS-PQC, an evolutionary quantum architecture search framework for PQC-based models.
We show that our method can significantly improve the performance of hybrid quantum-classical models.
arXiv Detail & Related papers (2022-08-23T19:47:37Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - MQBench: Towards Reproducible and Deployable Model Quantization
Benchmark [53.12623958951738]
MQBench is a first attempt to evaluate, analyze, and benchmark the and deployability for model quantization algorithms.
We choose multiple platforms for real-world deployments, including CPU, GPU, ASIC, DSP, and evaluate extensive state-of-the-art quantization algorithms.
We conduct a comprehensive analysis and find considerable intuitive or counter-intuitive insights.
arXiv Detail & Related papers (2021-11-05T23:38:44Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
We show that an uncertainty aware classifier can solve challenging reinforcement learning problems.
We propose a novel method for computing the normalized maximum likelihood (NML) distribution.
We show that the resulting algorithm has a number of intriguing connections to both count-based exploration methods and prior algorithms for learning reward functions.
arXiv Detail & Related papers (2021-07-15T08:19:57Z) - Quantum Embedding Search for Quantum Machine Learning [2.7612093695074456]
We introduce a novel quantum embedding search algorithm (QES), pronounced as "quest"
We establish the connection between the structures of quantum embedding and the representations of directed multi-graphs, enabling a well-defined search space.
We demonstrate the feasibility of our proposed approach on synthesis and Iris datasets, which empirically shows that quantum embedding architecture by QES outperforms manual designs.
arXiv Detail & Related papers (2021-05-25T11:50:57Z) - CATCH: Context-based Meta Reinforcement Learning for Transferrable
Architecture Search [102.67142711824748]
CATCH is a novel Context-bAsed meTa reinforcement learning algorithm for transferrable arChitecture searcH.
The combination of meta-learning and RL allows CATCH to efficiently adapt to new tasks while being agnostic to search spaces.
It is also capable of handling cross-domain architecture search as competitive networks on ImageNet, COCO, and Cityscapes are identified.
arXiv Detail & Related papers (2020-07-18T09:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.