Linearized Wasserstein Barycenters: Synthesis, Analysis, Representational Capacity, and Applications
- URL: http://arxiv.org/abs/2410.23602v2
- Date: Tue, 08 Apr 2025 00:49:14 GMT
- Title: Linearized Wasserstein Barycenters: Synthesis, Analysis, Representational Capacity, and Applications
- Authors: Matthew Werenski, Brendan Mallery, Shuchin Aeron, James M. Murphy,
- Abstract summary: We provide a closed-form solution to the variational problem characterizing the probability measures in the LBCM.<n>We show that a natural analogous construction of an LBCM in 2 dimensions fails, and we leave it as an open problem to identify the proper extension in more than 1 dimension.
- Score: 12.915771705517605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose the linear barycentric coding model (LBCM) which utilizes the linear optimal transport (LOT) metric for analysis and synthesis of probability measures. We provide a closed-form solution to the variational problem characterizing the probability measures in the LBCM and establish equivalence of the LBCM to the set of 2-Wasserstein barycenters in the special case of compatible measures. Computational methods for synthesizing and analyzing measures in the LBCM are developed with finite sample guarantees. One of our main theoretical contributions is to identify an LBCM, expressed in terms of a simple family, which is sufficient to express all probability measures on the closed unit interval. We show that a natural analogous construction of an LBCM in 2 dimensions fails, and we leave it as an open problem to identify the proper extension in more than 1 dimension. We conclude by demonstrating the utility of LBCM for covariance estimation and data imputation.
Related papers
- Cramer-Rao Bounds for Laplacian Matrix Estimation [56.1214184671173]
We derive closed-form matrix expressions for the Cramer-Rao Bound (CRB) specifically tailored to Laplacian matrix estimation.
We demonstrate the use of CRBs in three representative applications: (i) topology identification in power systems, (ii) graph filter identification in diffused models, and (iii) precision matrix estimation in Gaussian Markov random fields under Laplacian constraints.
arXiv Detail & Related papers (2025-04-06T18:28:31Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - BA-BFL: Barycentric Aggregation for Bayesian Federated Learning [9.670266892454945]
We study the problem of aggregation in the context of Bayesian Federated Learning (BFL)
Using an information geometric perspective, we interpret the BFL aggregation step as finding the barycenter of the trained posteriors for a pre-specified divergence metric.
Considering a non-IID setup, we analyze the performance of the developed algorithms against state-of-the-art (SOTA) Bayesian aggregation methods.
arXiv Detail & Related papers (2024-12-16T10:47:05Z) - On the Consistency of Maximum Likelihood Estimation of Probabilistic
Principal Component Analysis [1.0528389538549636]
PPCA has a broad spectrum of applications ranging from science and engineering to quantitative finance.
Despite this wide applicability in various fields, hardly any theoretical guarantees exist to justify the soundness of the maximal likelihood (ML) solution for this model.
We propose a novel approach using quotient topological spaces and in particular, we show that the maximum likelihood solution is consistent in an appropriate quotient Euclidean space.
arXiv Detail & Related papers (2023-11-08T22:40:45Z) - A Robustness Analysis of Blind Source Separation [91.3755431537592]
Blind source separation (BSS) aims to recover an unobserved signal from its mixture $X=f(S)$ under the condition that the transformation $f$ is invertible but unknown.
We present a general framework for analysing such violations and quantifying their impact on the blind recovery of $S$ from $X$.
We show that a generic BSS-solution in response to general deviations from its defining structural assumptions can be profitably analysed in the form of explicit continuity guarantees.
arXiv Detail & Related papers (2023-03-17T16:30:51Z) - Targeted Separation and Convergence with Kernel Discrepancies [61.973643031360254]
kernel-based discrepancy measures are required to (i) separate a target P from other probability measures or (ii) control weak convergence to P.
In this article we derive new sufficient and necessary conditions to ensure (i) and (ii)
For MMDs on separable metric spaces, we characterize those kernels that separate Bochner embeddable measures and introduce simple conditions for separating all measures with unbounded kernels.
arXiv Detail & Related papers (2022-09-26T16:41:16Z) - Measure Estimation in the Barycentric Coding Model [13.621495571281201]
Estimating a measure under the barycentric coding model is equivalent to estimating the unknown barycenteric coordinates.
We provide novel geometrical, statistical, and computational insights for measure estimation under the BCM.
arXiv Detail & Related papers (2022-01-28T15:51:30Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
A complete recipe of measure-preserving diffusions in Euclidean space was recently derived unifying several MCMC algorithms into a single framework.
We develop a geometric theory that improves and generalises this construction to any manifold.
arXiv Detail & Related papers (2021-05-06T17:36:55Z) - Conditional Density Estimation via Weighted Logistic Regressions [0.30458514384586394]
We propose a novel parametric conditional density estimation method by showing the connection between the general density and the likelihood function of inhomogeneous process models.
The maximum likelihood estimates can be obtained via weighted logistic regressions, and the computation can be significantly relaxed by combining a block-wise alternating scheme and local case-control sampling.
arXiv Detail & Related papers (2020-10-21T11:08:25Z) - Exact and Approximation Algorithms for Sparse PCA [1.7640556247739623]
This paper proposes two exact mixed-integer SDPs (MISDPs)
We then analyze the theoretical optimality gaps of their continuous relaxation values and prove that they are stronger than that of the state-of-art one.
Since off-the-shelf solvers, in general, have difficulty in solving MISDPs, we approximate SPCA with arbitrary accuracy by a mixed-integer linear program (MILP) of a similar size as MISDPs.
arXiv Detail & Related papers (2020-08-28T02:07:08Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Generalized Sliced Distances for Probability Distributions [47.543990188697734]
We introduce a broad family of probability metrics, coined as Generalized Sliced Probability Metrics (GSPMs)
GSPMs are rooted in the generalized Radon transform and come with a unique geometric interpretation.
We consider GSPM-based gradient flows for generative modeling applications and show that under mild assumptions, the gradient flow converges to the global optimum.
arXiv Detail & Related papers (2020-02-28T04:18:00Z) - Distributed, partially collapsed MCMC for Bayesian Nonparametrics [68.5279360794418]
We exploit the fact that completely random measures, which commonly used models like the Dirichlet process and the beta-Bernoulli process can be expressed as, are decomposable into independent sub-measures.
We use this decomposition to partition the latent measure into a finite measure containing only instantiated components, and an infinite measure containing all other components.
The resulting hybrid algorithm can be applied to allow scalable inference without sacrificing convergence guarantees.
arXiv Detail & Related papers (2020-01-15T23:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.