論文の概要: Local Superior Soups: A Catalyst for Model Merging in Cross-Silo Federated Learning
- arxiv url: http://arxiv.org/abs/2410.23660v1
- Date: Thu, 31 Oct 2024 06:20:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:01:09.022905
- Title: Local Superior Soups: A Catalyst for Model Merging in Cross-Silo Federated Learning
- Title(参考訳): ローカル・スーパー・スープ:クロスサイロ・フェデレーション・ラーニングにおけるモデルマージのための触媒
- Authors: Minghui Chen, Meirui Jiang, Xin Zhang, Qi Dou, Zehua Wang, Xiaoxiao Li,
- Abstract要約: 我々は「ローカル・スーパー・スープ」と呼ばれる革新的モデルに基づくローカル・トレーニング手法を提案する。
提案手法は, 異なるクライアント間でのローカルトレーニングを強化し, 接続された低損失盆地の探索を奨励する。
広範に使われているFLデータセットにまたがって,その有効性と効率を実証した。
- 参考スコア(独自算出の注目度): 33.88701368538447
- License:
- Abstract: Federated learning (FL) is a learning paradigm that enables collaborative training of models using decentralized data. Recently, the utilization of pre-trained weight initialization in FL has been demonstrated to effectively improve model performance. However, the evolving complexity of current pre-trained models, characterized by a substantial increase in parameters, markedly intensifies the challenges associated with communication rounds required for their adaptation to FL. To address these communication cost issues and increase the performance of pre-trained model adaptation in FL, we propose an innovative model interpolation-based local training technique called ``Local Superior Soups.'' Our method enhances local training across different clients, encouraging the exploration of a connected low-loss basin within a few communication rounds through regularized model interpolation. This approach acts as a catalyst for the seamless adaptation of pre-trained models in in FL. We demonstrated its effectiveness and efficiency across diverse widely-used FL datasets. Our code is available at \href{https://github.com/ubc-tea/Local-Superior-Soups}{https://github.com/ubc-tea/Local-Superior-Soups}.
- Abstract(参考訳): フェデレートラーニング(Federated Learning, FL)は、分散データを用いたモデルの協調トレーニングを可能にする学習パラダイムである。
近年,FLにおける事前学習重量初期化の利用は,モデル性能を効果的に向上することを示した。
しかし、パラメータの大幅な増加を特徴とする現在の事前学習モデルの複雑さは、FLへの適応に必要な通信ラウンドに関わる課題を著しく高めている。
これらの通信コスト問題に対処し、FLにおける事前学習モデル適応の性能を高めるために、我々は「ローカル・スーパー・スープ」と呼ばれる、補間に基づく局所的な訓練手法を提案する。
そこで,本手法は,複数のクライアント間でのローカルトレーニングを強化し,正規化モデル補間による数回の通信ラウンドで接続された低損失盆地の探索を奨励する。
このアプローチはFLにおける事前学習モデルのシームレスな適応の触媒として機能する。
広範に使われているFLデータセットにまたがって,その有効性と効率を実証した。
私たちのコードは \href{https://github.com/ubc-tea/Local-Superior-Soups}{https://github.com/ubc-tea/Local-Superior-Soups} で利用可能です。
関連論文リスト
- A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
フェデレーテッド・ラーニング(FL)は、多数のクライアントにわたるプライバシー保護協調トレーニングを促進するための確立した技術となっている。
Foundation Models (FM)の後、多くのディープラーニングアプリケーションでは現実が異なる。
FLアプリケーションに対するパラメータ効率細調整(PEFT)の利点と欠点について論じる。
論文 参考訳(メタデータ) (2024-01-09T10:22:23Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
クロスサイロフェデレーション学習(FL)は、データセンタに分散したデータセット上での機械学習モデルの開発を可能にする。
近年の研究では、現在のFLアルゴリズムは、分布シフトに直面した場合、局所的な性能とグローバルな性能のトレードオフに直面している。
地域とグローバルのパフォーマンスのトレードオフを最適化する新しいフェデレーションモデルスープ手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T00:07:29Z) - Guiding The Last Layer in Federated Learning with Pre-Trained Models [18.382057374270143]
フェデレートラーニング(FL)は、データを共有することなく、多数の参加者にまたがってモデルをトレーニングできる新興パラダイムである。
NCM(Nearest Class Means)を用いた分類ヘッドの適合は,既存の提案よりも正確に,桁違いに効率的に行えることを示す。
論文 参考訳(メタデータ) (2023-06-06T18:02:02Z) - Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training [67.67045085186797]
既存のシステムのほとんどは、中央のFLサーバが失敗した場合、大きな通信負荷に直面しなければならない。
共有パラメータと個人パラメータを交互に更新することで、ディープモデルの「右」をパーソナライズする。
共有パラメータアグリゲーションプロセスをさらに促進するために、ローカルシャープネス最小化を統合するDFedを提案する。
論文 参考訳(メタデータ) (2023-05-24T13:52:18Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - FedTune: A Deep Dive into Efficient Federated Fine-Tuning with
Pre-trained Transformers [16.465900409973656]
Federated Learning(FL)は、分散型ユーザがプライベートデータを共有せずに、協調的かつ反復的に機械学習モデルをトレーニングすることを可能にする、新興パラダイムである。
研究者たちは、FLの従来の畳み込みニューラルネットワークの代わりに、事前訓練されたトランスフォーマーを使用して、優れたトランスフォーマー学習能力を活用しようとしている。
本手法は高速収束率と通信コストの低減に有効であることを示す。
論文 参考訳(メタデータ) (2022-11-15T10:16:13Z) - Conquering the Communication Constraints to Enable Large Pre-Trained Models in Federated Learning [18.12162136918301]
フェデレートラーニング(FL)は、ローカルデバイス上の生データに一元的にアクセスすることなく、モデルの協調的なトレーニングを可能にするための、有望なパラダイムとして登場した。
最近の最先端の事前訓練モデルでは、より能力が高くなっているが、パラメータも増えている。
FLにおけるこれらの強力で容易に利用できる事前学習モデルが、通信負荷を同時に軽減しつつ優れた性能を達成するためのソリューションを見つけることができるだろうか?
具体的には,FedPEFTの性能を,クライアントの安定性,データ分散,プライバシ設定の違いによって体系的に評価する。
論文 参考訳(メタデータ) (2022-10-04T16:08:54Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
フェデレートラーニング(FL)は、複数の参加者が生データを共有せずに学習をコラボレーションするための分散ラーニングフレームワークを提供する。
本稿では, モデルサイズとロバスト性をその場でカスタマイズできる, 不均一な参加者のための新しいスプリット・ミクス・FL戦略を提案する。
論文 参考訳(メタデータ) (2022-03-18T04:58:34Z) - Continual Local Training for Better Initialization of Federated Models [14.289213162030816]
フェデレートラーニング(Federated Learning、FL)とは、機械学習モデルを分散システムで直接訓練する学習パラダイムである。
一般的なFLアルゴリズムであるemphFederated Averaging (FedAvg)は重みのばらつきに悩まされている。
本稿では,この問題に対処するための局所的な継続的トレーニング戦略を提案する。
論文 参考訳(メタデータ) (2020-05-26T12:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。