Projected Neural Differential Equations for Learning Constrained Dynamics
- URL: http://arxiv.org/abs/2410.23667v1
- Date: Thu, 31 Oct 2024 06:32:43 GMT
- Title: Projected Neural Differential Equations for Learning Constrained Dynamics
- Authors: Alistair White, Anna Büttner, Maximilian Gelbrecht, Valentin Duruisseaux, Niki Kilbertus, Frank Hellmann, Niklas Boers,
- Abstract summary: We introduce a new method for constraining neural differential equations based on projection of the learned vector field to the tangent space of the constraint manifold.
PNDEs outperform existing methods while requiring fewer hyper parameters.
The proposed approach demonstrates significant potential for enhancing the modeling of constrained dynamical systems.
- Score: 3.570367665112327
- License:
- Abstract: Neural differential equations offer a powerful approach for learning dynamics from data. However, they do not impose known constraints that should be obeyed by the learned model. It is well-known that enforcing constraints in surrogate models can enhance their generalizability and numerical stability. In this paper, we introduce projected neural differential equations (PNDEs), a new method for constraining neural differential equations based on projection of the learned vector field to the tangent space of the constraint manifold. In tests on several challenging examples, including chaotic dynamical systems and state-of-the-art power grid models, PNDEs outperform existing methods while requiring fewer hyperparameters. The proposed approach demonstrates significant potential for enhancing the modeling of constrained dynamical systems, particularly in complex domains where accuracy and reliability are essential.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Semi-Supervised Learning of Dynamical Systems with Neural Ordinary
Differential Equations: A Teacher-Student Model Approach [10.20098335268973]
TS-NODE is the first semi-supervised approach to modeling dynamical systems with NODE.
We show significant performance improvements over a baseline Neural ODE model on multiple dynamical system modeling tasks.
arXiv Detail & Related papers (2023-10-19T19:17:12Z) - Stabilized Neural Differential Equations for Learning Dynamics with
Explicit Constraints [4.656302602746229]
We propose stabilized neural differential equations (SNDEs) to enforce arbitrary manifold constraints for neural differential equations.
Our approach is based on a stabilization term that, when added to the original dynamics, renders the constraint manifold provably stable.
Due to its simplicity, our method is compatible with all common neural differential equation (NDE) models and broadly applicable.
arXiv Detail & Related papers (2023-06-16T10:16:59Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Approximate Latent Force Model Inference [1.3927943269211591]
latent force models offer an interpretable alternative to purely data driven tools for inference in dynamical systems.
We show that a neural operator approach can scale our model to thousands of instances, enabling fast, distributed computation.
arXiv Detail & Related papers (2021-09-24T09:55:00Z) - Accelerating Neural ODEs Using Model Order Reduction [0.0]
We show that mathematical model order reduction methods can be used for compressing and accelerating Neural ODEs.
We implement our novel compression method by developing Neural ODEs that integrate the necessary subspace-projection and operations as layers of the neural network.
arXiv Detail & Related papers (2021-05-28T19:27:09Z) - Constrained Neural Ordinary Differential Equations with Stability
Guarantees [1.1086440815804224]
We show how to model discrete ordinary differential equations with algebraic nonlinearities as deep neural networks.
We derive the stability guarantees of the network layers based on the implicit constraints imposed on the weight's eigenvalues.
We demonstrate the prediction accuracy of learned neural ODEs evaluated on open-loop simulations.
arXiv Detail & Related papers (2020-04-22T22:07:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.