論文の概要: Graph Neural Networks Uncover Geometric Neural Representations in Reinforcement-Based Motor Learning
- arxiv url: http://arxiv.org/abs/2410.23812v1
- Date: Thu, 31 Oct 2024 10:54:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:59:51.100148
- Title: Graph Neural Networks Uncover Geometric Neural Representations in Reinforcement-Based Motor Learning
- Title(参考訳): グラフニューラルネットワークによる強化型運動学習における幾何学的ニューラル表現の解明
- Authors: Federico Nardi, Jinpei Han, Shlomi Haar, A. Aldo Faisal,
- Abstract要約: グラフニューラルネットワーク(GNN)は、脳波データにおける神経表現の幾何学的性質を捉えることができる。
強化型運動学習が運動計画中の神経活動パターンに与える影響について検討した。
- 参考スコア(独自算出の注目度): 3.379988469252273
- License:
- Abstract: Graph Neural Networks (GNN) can capture the geometric properties of neural representations in EEG data. Here we utilise those to study how reinforcement-based motor learning affects neural activity patterns during motor planning, leveraging the inherent graph structure of EEG channels to capture the spatial relationships in brain activity. By exploiting task-specific symmetries, we define different pretraining strategies that not only improve model performance across all participant groups but also validate the robustness of the geometric representations. Explainability analysis based on the graph structures reveals consistent group-specific neural signatures that persist across pretraining conditions, suggesting stable geometric structures in the neural representations associated with motor learning and feedback processing. These geometric patterns exhibit partial invariance to certain task space transformations, indicating symmetries that enable generalisation across conditions while maintaining specificity to individual learning strategies. This work demonstrates how GNNs can uncover the effects of previous outcomes on motor planning, in a complex real-world task, providing insights into the geometric principles governing neural representations. Our experimental design bridges the gap between controlled experiments and ecologically valid scenarios, offering new insights into the organisation of neural representations during naturalistic motor learning, which may open avenues for exploring fundamental principles governing brain activity in complex tasks.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、脳波データにおける神経表現の幾何学的性質を捉えることができる。
ここでは、強化に基づく運動学習が、運動計画中の神経活動パターンにどのように影響するかを研究するために、脳波チャンネルの固有のグラフ構造を利用して、脳活動の空間的関係を捉える。
タスク固有の対称性を利用することで、全ての参加者群でモデル性能を向上させるだけでなく、幾何学的表現の堅牢性も検証する様々な事前学習戦略を定義する。
グラフ構造に基づく説明可能性解析により、事前学習条件を越えて継続する一貫したグループ固有のニューラルシグネチャが明らかとなり、運動学習やフィードバック処理に関連する神経表現における安定した幾何学的構造が示唆される。
これらの幾何学的パターンは、特定のタスク空間変換に対する部分的不変性を示し、個々の学習戦略に特異性を維持しながら、条件をまたいだ一般化を可能にする対称性を示す。
この研究は、GNNが複雑な現実世界のタスクにおいて、以前の成果が運動計画に与える影響を明らかにし、神経表現を規定する幾何学的原理に関する洞察を提供する。
我々の実験設計は、制御された実験と生態学的に有効なシナリオのギャップを埋め、自然主義的な運動学習における神経表現の組織に対する新たな洞察を提供する。
関連論文リスト
- Pushing the Limits of All-Atom Geometric Graph Neural Networks: Pre-Training, Scaling and Zero-Shot Transfer [15.302727191576784]
全原子情報を持つ幾何学グラフニューラルネットワーク(Geom-GNN)は、原子論シミュレーションを変換した。
本研究では,Geom-GNNの自己教師付き事前学習,教師付き学習,教師なし学習環境におけるスケーリング行動について検討する。
我々は、全ての原子グラフの埋め込みが他の神経アーキテクチャと有機的に組み合わされ、表現力を高めることができることを示す。
論文 参考訳(メタデータ) (2024-10-29T03:07:33Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Probing Biological and Artificial Neural Networks with Task-dependent
Neural Manifolds [12.037840490243603]
本稿では,ニューラルネットワークの内部機構について,ニューラル集団幾何学のレンズを用いて検討する。
学習目的の違いが,これらのモデルの組織戦略の違いにどのように影響するかを定量的に評価する。
これらの分析は、ニューラルネットワークにおける機械的および規範的理論を神経集団幾何学を通してブリッジする強力な方向を示す。
論文 参考訳(メタデータ) (2023-12-21T20:40:51Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Randomly Weighted Neuromodulation in Neural Networks Facilitates
Learning of Manifolds Common Across Tasks [1.9580473532948401]
幾何知覚ハッシュ関数(Geometric Sensitive Hashing function)は、教師あり学習においてクラス固有の多様体幾何を学ぶニューラルネットワークモデルである。
神経変調システムを用いたランダムに重み付けされたニューラルネットワークは,この機能を実現することができることを示す。
論文 参考訳(メタデータ) (2023-11-17T15:22:59Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Geometric Knowledge Distillation: Topology Compression for Graph Neural
Networks [80.8446673089281]
グラフトポロジ情報をグラフニューラルネットワーク(GNN)に符号化することを目的とした知識伝達の新しいパラダイムについて検討する。
本稿では,GNNのアーキテクチャに関する基礎となる多様体の幾何学的性質をカプセル化するためのニューラルヒートカーネル(NHK)を提案する。
基本的な原理的解法は、NHKを幾何学的知識蒸留(Geometric Knowledge Distillation)と呼ばれる教師モデルと学生モデルに合わせることで導かれる。
論文 参考訳(メタデータ) (2022-10-24T08:01:58Z) - CogNGen: Constructing the Kernel of a Hyperdimensional Predictive
Processing Cognitive Architecture [79.07468367923619]
神経生物学的に妥当な2つの計算モデルを組み合わせた新しい認知アーキテクチャを提案する。
我々は、現代の機械学習技術の力を持つ認知アーキテクチャを開発することを目指している。
論文 参考訳(メタデータ) (2022-03-31T04:44:28Z) - An explainability framework for cortical surface-based deep learning [110.83289076967895]
我々は,皮質表面の深層学習のためのフレームワークを開発した。
まず,表面データに摂動に基づくアプローチを適用した。
我々の説明可能性フレームワークは,重要な特徴とその空間的位置を識別できるだけでなく,信頼性と有効性も示している。
論文 参考訳(メタデータ) (2022-03-15T23:16:49Z) - Neural population geometry: An approach for understanding biological and
artificial neural networks [3.4809730725241605]
生体および人工ニューラルネットワークの機能に関する洞察を提供する幾何学的アプローチの例を概観する。
神経集団幾何学は、生体と人工のニューラルネットワークにおける構造と機能の理解を統一する可能性がある。
論文 参考訳(メタデータ) (2021-04-14T18:10:34Z) - A Graph Neural Network Framework for Causal Inference in Brain Networks [0.3392372796177108]
神経科学における中心的な問題は、脳内の自律的な動的相互作用が、比較的静的なバックボーンにどのように現れるかである。
構造解剖学的レイアウトに基づく機能的相互作用を記述するグラフニューラルネットワーク(GNN)フレームワークを提案する。
我々は,GNNがデータの長期的依存関係をキャプチャし,大規模ネットワークの解析までスケールアップ可能であることを示す。
論文 参考訳(メタデータ) (2020-10-14T15:01:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。