論文の概要: Ada-MSHyper: Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2410.23992v1
- Date: Thu, 31 Oct 2024 14:51:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:01:01.581401
- Title: Ada-MSHyper: Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting
- Title(参考訳): Ada-MSHyper: 時系列予測のための適応型マルチスケールハイパーグラフ変換器
- Authors: Zongjiang Shang, Ling Chen, Binqing wu, Dongliang Cui,
- Abstract要約: 時系列予測のための適応型マルチスケールハイパーグラフ変換器(Ada-MSHyper)を提案する。
Ada-MSHyperは最先端の性能を達成し、予測誤差を平均4.56%、10.38%、MSEの4.97%減らし、長距離、短距離、超長距離の時系列予測を行う。
- 参考スコア(独自算出の注目度): 5.431115840202783
- License:
- Abstract: Although transformer-based methods have achieved great success in multi-scale temporal pattern interaction modeling, two key challenges limit their further development: (1) Individual time points contain less semantic information, and leveraging attention to model pair-wise interactions may cause the information utilization bottleneck. (2) Multiple inherent temporal variations (e.g., rising, falling, and fluctuating) entangled in temporal patterns. To this end, we propose Adaptive Multi-Scale Hypergraph Transformer (Ada-MSHyper) for time series forecasting. Specifically, an adaptive hypergraph learning module is designed to provide foundations for modeling group-wise interactions, then a multi-scale interaction module is introduced to promote more comprehensive pattern interactions at different scales. In addition, a node and hyperedge constraint mechanism is introduced to cluster nodes with similar semantic information and differentiate the temporal variations within each scales. Extensive experiments on 11 real-world datasets demonstrate that Ada-MSHyper achieves state-of-the-art performance, reducing prediction errors by an average of 4.56%, 10.38%, and 4.97% in MSE for long-range, short-range, and ultra-long-range time series forecasting, respectively. Code is available at https://github.com/shangzongjiang/Ada-MSHyper.
- Abstract(参考訳): トランスフォーマーに基づく手法はマルチスケールの時間的パターン相互作用モデリングにおいて大きな成功を収めているが、(1)個々の時間ポイントが意味情報が少ないこと、およびペアの相互作用に注意を向けることによって情報利用のボトルネックを引き起こす可能性があること、の2つの大きな課題がある。
2) 時間的変動(例えば, 上昇, 降下, 変動)は時間的パターンに絡み合っていた。
そこで本研究では,時系列予測のための適応型マルチスケールハイパーグラフ変換器(Ada-MSHyper)を提案する。
具体的には、適応的なハイパーグラフ学習モジュールは、グループ間相互作用をモデル化するための基礎を提供するよう設計され、異なるスケールでのより包括的なパターン相互作用を促進するために、マルチスケール相互作用モジュールが導入された。
さらに、類似した意味情報を持つクラスタノードにノードとハイパーエッジの制約機構を導入し、各スケール内の時間的変動を区別する。
11の実世界のデータセットに対する大規模な実験により、Ada-MSHyperは最先端のパフォーマンスを達成し、予測誤差を平均4.56%、10.38%、MSEの4.97%減らし、それぞれ長距離、短距離、超長距離の時系列予測を行うことが示された。
コードはhttps://github.com/shangzongjiang/Ada-MSHyperで入手できる。
関連論文リスト
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
時系列における教師なし異常検出は、手動による介入の必要性を大幅に低減するため、産業応用において不可欠である。
従来の手法では、グラフニューラルネットワーク(GNN)やトランスフォーマーを使用して空間を解析し、RNNは時間的依存をモデル化していた。
本稿では,TopoGDNと呼ばれる多変量時系列異常検出のための拡張グラフ注意ネットワーク(GAT)上に構築された新しい時間モデルを提案する。
論文 参考訳(メタデータ) (2024-08-23T14:06:30Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
フラット化されたパッチトークンに統一された注意機構を含む変圧器ベースモデルUniTSTを提案する。
提案モデルでは単純なアーキテクチャを採用しているが,時系列予測のためのいくつかのデータセットの実験で示されたような,魅力的な性能を提供する。
論文 参考訳(メタデータ) (2024-06-07T14:39:28Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
時系列データは、その固有の長短の依存関係によって特徴づけられる。
本稿では,時系列タスクの普遍的畳み込みモデルとして,新しい時系列軽量ネットワーク(TSLANet)を導入する。
我々の実験では、TSLANetは分類、予測、異常検出にまたがる様々なタスクにおいて最先端のモデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-04-12T13:41:29Z) - MSHyper: Multi-Scale Hypergraph Transformer for Long-Range Time Series
Forecasting [7.178309082582536]
より包括的なパターン相互作用モデリングを促進するために,マルチスケールハイパーグラフトランス (MSHyper) フレームワークを提案する。
MSHyperは最先端のパフォーマンスを達成し、予測エラーを平均8.73%、MSEとMAEのベースラインで7.15%削減する。
論文 参考訳(メタデータ) (2024-01-17T15:12:11Z) - EdgeConvFormer: Dynamic Graph CNN and Transformer based Anomaly
Detection in Multivariate Time Series [7.514010315664322]
本研究では,階層化されたTime2vec埋め込み,動的グラフCNN,Transformerを統合し,グローバルかつ局所的な空間時間情報を抽出する新たな異常検出手法EdgeConvFormerを提案する。
実験により、EdgeConvFormerは、多変量時系列データから時空間モデリングを学習し、異なるスケールの多くの実世界のデータセットに対する最先端のアプローチよりも優れた異常検出性能を得ることができることが示された。
論文 参考訳(メタデータ) (2023-12-04T08:38:54Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
パウラ理論に基づいて,最近導入されたトランスフォーマーに基づく注目パウラ(TACTiS)の簡易な目的を提案する。
結果から,実世界の予測タスクにまたがって,このモデルのトレーニング性能が大幅に向上し,最先端のパフォーマンスが達成できることが示唆された。
論文 参考訳(メタデータ) (2023-10-02T16:45:19Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。