論文の概要: An Information Criterion for Controlled Disentanglement of Multimodal Data
- arxiv url: http://arxiv.org/abs/2410.23996v1
- Date: Thu, 31 Oct 2024 14:57:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:02:23.016532
- Title: An Information Criterion for Controlled Disentanglement of Multimodal Data
- Title(参考訳): マルチモーダルデータの分散制御のための情報基準
- Authors: Chenyu Wang, Sharut Gupta, Xinyi Zhang, Sana Tonekaboni, Stefanie Jegelka, Tommi Jaakkola, Caroline Uhler,
- Abstract要約: マルチモーダル表現学習は、複数のモーダルに固有の情報を関連付けて分解しようとする。
Disentangled Self-Supervised Learning (DisentangledSSL)は、非角表現を学習するための新しい自己教師型アプローチである。
- 参考スコア(独自算出の注目度): 39.601584166020274
- License:
- Abstract: Multimodal representation learning seeks to relate and decompose information inherent in multiple modalities. By disentangling modality-specific information from information that is shared across modalities, we can improve interpretability and robustness and enable downstream tasks such as the generation of counterfactual outcomes. Separating the two types of information is challenging since they are often deeply entangled in many real-world applications. We propose Disentangled Self-Supervised Learning (DisentangledSSL), a novel self-supervised approach for learning disentangled representations. We present a comprehensive analysis of the optimality of each disentangled representation, particularly focusing on the scenario not covered in prior work where the so-called Minimum Necessary Information (MNI) point is not attainable. We demonstrate that DisentangledSSL successfully learns shared and modality-specific features on multiple synthetic and real-world datasets and consistently outperforms baselines on various downstream tasks, including prediction tasks for vision-language data, as well as molecule-phenotype retrieval tasks for biological data.
- Abstract(参考訳): マルチモーダル表現学習は、複数のモーダルに固有の情報を関連付けて分解しようとする。
モダリティ間で共有される情報からモダリティ固有の情報を切り離すことで、解釈性と堅牢性を改善し、対実結果の生成などの下流タスクを可能にする。
2つのタイプの情報を分離することは、現実の多くのアプリケーションに深く絡み合っていることが多いため、難しい。
本稿では,非絡み表現を学習するための新しい自己教師型アプローチであるDisentangled Self-Supervised Learning (DisentangledSSL)を提案する。
本稿では,各不整合表現の最適性を包括的に分析し,特に,MNI(Minimum Necessary Information)と呼ばれるポイントが達成できない先行作業ではカバーされないシナリオに着目した。
DisentangledSSLは、複数の合成および実世界のデータセット上で共有およびモダリティ固有の特徴をうまく学習し、視覚言語データの予測タスクや生物学的データのための分子フェノタイプ検索タスクなど、さまざまな下流タスクのベースラインを一貫して上回っていることを実証した。
関連論文リスト
- Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models [12.841405829775852]
我々は、VidQAベンチマークとデータセットのバイアスを特定するために、MIS(Modality importance score)を導入する。
また,最新のMLLMを用いてモダリティの重要度を推定する手法を提案する。
以上の結果から,既存のデータセットでは,モダリティの不均衡による情報統合が効果的に行われていないことが示唆された。
論文 参考訳(メタデータ) (2024-08-22T23:32:42Z) - Beyond Unimodal Learning: The Importance of Integrating Multiple Modalities for Lifelong Learning [23.035725779568587]
ディープニューラルネットワーク(DNN)におけるマルチモーダル性の役割と相互作用について検討する。
以上の結果から,複数のビューと相補的な情報を複数のモーダルから活用することで,より正確かつ堅牢な表現を学習できることが示唆された。
本稿では,各モーダルにおけるデータ点間の関係構造的類似性を利用して,異なるモーダルからの情報の統合と整合化を行う手法を提案する。
論文 参考訳(メタデータ) (2024-05-04T22:02:58Z) - Neuro-Inspired Information-Theoretic Hierarchical Perception for Multimodal Learning [16.8379583872582]
我々は,情報ボトルネックの概念を利用する情報理論階層知覚(ITHP)モデルを開発した。
我々は、ITHPがマルチモーダル学習シナリオにおいて重要な情報を一貫して蒸留し、最先端のベンチマークより優れていることを示す。
論文 参考訳(メタデータ) (2024-04-15T01:34:44Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
マルチタスク学習(MTL)は、複数の関連するタスクを共同で学習し、共有表現空間から恩恵を受けるフレームワークである。
MTLは、ほとんど重複しない、あるいは重複しないアノテーションで分類タスクで成功することを示す。
本稿では,分散マッチングによるタスク間の知識交換を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T14:18:11Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) は、トランスフォーマーのバックボーンを組み込んだ拡散に基づく手法であり、生成計画とデータ合成のための素早い学習を行う。
生成計画において、textscMTDiffはMeta-World上の50のタスクとMaze2D上の8のマップで最先端のアルゴリズムより優れています。
論文 参考訳(メタデータ) (2023-05-29T05:20:38Z) - Leveraging sparse and shared feature activations for disentangled
representation learning [112.22699167017471]
本稿では,教師付きタスクの多種多様な集合から抽出した知識を活用し,共通不整合表現を学習することを提案する。
我々は6つの実世界分布シフトベンチマークと異なるデータモダリティに対するアプローチを検証する。
論文 参考訳(メタデータ) (2023-04-17T01:33:24Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
我々は,多視点表現学習における2つの重要な特徴を利用するために,様々な情報ボトルネックを設計する。
厳密な理論的保証の下で,本手法は,観察とセマンティックラベルの内在的相関の把握を可能にする。
論文 参考訳(メタデータ) (2022-06-20T03:09:46Z) - Beyond Just Vision: A Review on Self-Supervised Representation Learning
on Multimodal and Temporal Data [10.006890915441987]
自己教師型学習の普及は、従来のモデルがトレーニングに大量の十分な注釈付きデータを必要とするという事実によって引き起こされる。
モデルの差別的事前学習を通じて、訓練データの効率を向上させるための自己指導手法が導入された。
我々は,時間的データに対するマルチモーダルな自己教師型学習手法の総合的なレビューを初めて提供することを目的とする。
論文 参考訳(メタデータ) (2022-06-06T04:59:44Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
MTL(Multi-Task Learning)は、関連するタスク間で表現を共有することで、モデル一般化を強化することを目的としている。
そこで本研究では,異なるデータセットから利用可能な監視信号を活用するために,半教師付きマルチタスク学習(MTL)手法を提案する。
本稿では,データセット間の整合性の問題を軽減するために,様々なアライメントの定式化を施したドメイン認識識別器構造を提案する。
論文 参考訳(メタデータ) (2021-10-14T07:43:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。