Assessing the Efficacy of Classical and Deep Neuroimaging Biomarkers in Early Alzheimer's Disease Diagnosis
- URL: http://arxiv.org/abs/2410.24002v1
- Date: Thu, 31 Oct 2024 15:02:16 GMT
- Title: Assessing the Efficacy of Classical and Deep Neuroimaging Biomarkers in Early Alzheimer's Disease Diagnosis
- Authors: Milla E. Nielsen, Mads Nielsen, Mostafa Mehdipour Ghazi,
- Abstract summary: Alzheimer's disease (AD) is the leading cause of dementia, and its early detection is crucial for effective intervention.
This study aims to detect significant indicators of early AD by extracting and integrating various imaging biomarkers.
- Score: 2.2667044928324747
- License:
- Abstract: Alzheimer's disease (AD) is the leading cause of dementia, and its early detection is crucial for effective intervention, yet current diagnostic methods often fall short in sensitivity and specificity. This study aims to detect significant indicators of early AD by extracting and integrating various imaging biomarkers, including radiomics, hippocampal texture descriptors, cortical thickness measurements, and deep learning features. We analyze structural magnetic resonance imaging (MRI) scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohorts, utilizing comprehensive image analysis and machine learning techniques. Our results show that combining multiple biomarkers significantly improves detection accuracy. Radiomics and texture features emerged as the most effective predictors for early AD, achieving AUCs of 0.88 and 0.72 for AD and MCI detection, respectively. Although deep learning features proved to be less effective than traditional approaches, incorporating age with other biomarkers notably enhanced MCI detection performance. Additionally, our findings emphasize the continued importance of classical imaging biomarkers in the face of modern deep-learning approaches, providing a robust framework for early AD diagnosis.
Related papers
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Spatio-Temporal Similarity Measure based Multi-Task Learning for
Predicting Alzheimer's Disease Progression using MRI Data [18.669489433316127]
We propose a novel-temporal- similarity measure based multi-task learning approach for effectively predicting Alzheimer's disease progression.
Our method also enables performing longitudinal stability selection to identify the changing relationships between biomarkers.
We prove that the synergistic deteriorating biomarkers between cortical volumes or surface areas have a significant effect on the cognitive prediction.
arXiv Detail & Related papers (2023-11-06T21:59:19Z) - Multimodal Identification of Alzheimer's Disease: A Review [4.6358128931887705]
Alzheimer's disease is a progressive neurological disorder characterized by cognitive impairment and memory loss.
In recent years, a considerable number of teams have applied computer-aided diagnostic techniques to early classification research of AD.
arXiv Detail & Related papers (2023-10-06T12:48:15Z) - Early Detection of Alzheimer's Disease using Bottleneck Transformers [1.14219428942199]
We introduce a novel approach of using an ensemble of the self-attention-based Bottleneck Transformers with a sharpness aware minimizer for early detection of Alzheimer's Disease.
The proposed approach has been tested on the widely accepted ADNI dataset and evaluated using accuracy, precision, recall, F1 score, and ROC-AUC score as the performance metrics.
arXiv Detail & Related papers (2023-05-01T16:17:52Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
The NHS has been having increased difficulty seeing all low-risk patients, this includes but not limited to suspected osteoarthritis (OA) patients.
We propose a novel method of automated biomarker identification for diagnosis of knee disorders and the monitoring of treatment progression.
arXiv Detail & Related papers (2023-04-26T16:47:42Z) - Skeleton-based action analysis for ADHD diagnosis [10.393047508477173]
We propose a novel ADHD diagnosis system with a skeleton-based action recognition framework.
Compared to conventional methods, the proposed method shows cost-efficiency and significant performance improvement.
Our method is widely applicable for mass screening.
arXiv Detail & Related papers (2023-04-14T13:07:27Z) - Multimodal Attention-based Deep Learning for Alzheimer's Disease
Diagnosis [9.135911493822261]
Alzheimer's Disease (AD) is the most common neurodegenerative disorder with one of the most complex pathogeneses.
We present a Multimodal Alzheimer's Disease Diagnosis framework (MADDi) to accurately detect the presence of AD.
arXiv Detail & Related papers (2022-06-17T15:10:00Z) - Characterizing TMS-EEG perturbation indexes using signal energy: initial
study on Alzheimer's Disease classification [48.42347515853289]
Transcranial Magnetic Stimulation (TMS) combined with EEG recordings (TMS-EEG) has shown great potential in the study of the brain and in particular of Alzheimer's Disease (AD)
In this study, we propose an automatic method of determining the duration of TMS induced perturbation of the EEG signal as a potential metric reflecting the brain's functional alterations.
arXiv Detail & Related papers (2022-04-29T19:27:06Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
This work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI)
Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages.
This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.
arXiv Detail & Related papers (2021-05-18T11:37:57Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.