Early Detection of Alzheimer's Disease using Bottleneck Transformers
- URL: http://arxiv.org/abs/2305.00923v1
- Date: Mon, 1 May 2023 16:17:52 GMT
- Title: Early Detection of Alzheimer's Disease using Bottleneck Transformers
- Authors: Arunima Jaiswal, Ananya Sadana
- Abstract summary: We introduce a novel approach of using an ensemble of the self-attention-based Bottleneck Transformers with a sharpness aware minimizer for early detection of Alzheimer's Disease.
The proposed approach has been tested on the widely accepted ADNI dataset and evaluated using accuracy, precision, recall, F1 score, and ROC-AUC score as the performance metrics.
- Score: 1.14219428942199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early detection of Alzheimer's Disease (AD) and its prodromal state, Mild
Cognitive Impairment (MCI), is crucial for providing suitable treatment and
preventing the disease from progressing. It can also aid researchers and
clinicians to identify early biomarkers and minister new treatments that have
been a subject of extensive research. The application of deep learning
techniques on structural Magnetic Resonance Imaging (MRI) has shown promising
results in diagnosing the disease. In this research, we intend to introduce a
novel approach of using an ensemble of the self-attention-based Bottleneck
Transformers with a sharpness aware minimizer for early detection of
Alzheimer's Disease. The proposed approach has been tested on the widely
accepted ADNI dataset and evaluated using accuracy, precision, recall, F1
score, and ROC-AUC score as the performance metrics.
Related papers
- Assessing the Efficacy of Classical and Deep Neuroimaging Biomarkers in Early Alzheimer's Disease Diagnosis [2.2667044928324747]
Alzheimer's disease (AD) is the leading cause of dementia, and its early detection is crucial for effective intervention.
This study aims to detect significant indicators of early AD by extracting and integrating various imaging biomarkers.
arXiv Detail & Related papers (2024-10-31T15:02:16Z) - Statistical testing on generative AI anomaly detection tools in Alzheimer's Disease diagnosis [16.73336092521471]
generative AI has shown promise in anomaly detection in medical imaging.
We propose to solve this issue with selective inference and develop a reliable generative AI method for Alzheimer's prediction.
arXiv Detail & Related papers (2024-10-17T09:15:09Z) - Addressing the Gaps in Early Dementia Detection: A Path Towards Enhanced Diagnostic Models through Machine Learning [0.0]
The rapid global aging trend has led to an increase in dementia cases, including Alzheimer's disease.
Traditional diagnostic techniques, such as cognitive tests, neuroimaging, and biomarker analysis, face significant limitations in sensitivity, accessibility, and cost.
This study explores the potential of machine learning (ML) as a transformative approach to enhance early dementia detection.
arXiv Detail & Related papers (2024-09-05T00:52:59Z) - Leveraging Deep Learning and Xception Architecture for High-Accuracy MRI Classification in Alzheimer Diagnosis [11.295734491885682]
This study aims to classify MRI images using deep learning models to identify different stages of Alzheimer Disease.
Our experimental results show that the deep learning framework based on the Xception model achieved a 99.6% accuracy rate in the multi-class MRI image classification task.
arXiv Detail & Related papers (2024-03-24T16:11:27Z) - Automatic Detection of Alzheimer's Disease with Multi-Modal Fusion of
Clinical MRI Scans [8.684668542584701]
15 million Americans will have either clinical AD or mild cognitive impairment by 2060.
We aim to predict the stage of the disease based on two different types of brain MRI scans.
We design an AlexNet-based deep learning model that learns the synergy of complementary information from both T1 and FLAIR MRI scans.
arXiv Detail & Related papers (2023-11-30T04:32:28Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
Open-set recognition generalizes a classification task by classifying test samples as one of the known classes from training or "unknown"
We apply a recent existing Gaussian mixture variational autoencoder model, which achieves state-of-the-art results for image datasets, to breast cancer patient data.
Not only do we obtain more accurate and robust classification results, with a 24.5% average F1 increase compared to a recent method, but we also reexamine open-set recognition in terms of deployability to a clinical setting.
arXiv Detail & Related papers (2022-01-09T04:35:55Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
This work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI)
Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages.
This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.
arXiv Detail & Related papers (2021-05-18T11:37:57Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.